2022届张家港市达标名校中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.不等式3x<2(x+2)的解是( )
A.x>2 B.x<2 C.x>4 D.x<4
2.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )
A. B. C. D.
3.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.6 B.8 C.10 D.12
4.在,,0,1这四个数中,最小的数是
A. B. C.0 D.1
5.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )
A.10 B.9 C.8 D.6
6.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
这些运动员跳高成绩的中位数是( )
A. B. C. D.
7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网 B.球会过球网但不会出界
C.球会过球网并会出界 D.无法确定
8.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
9. “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为
A.675×102 B.67.5×102 C.6.75×104 D.6.75×105
10.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.
12.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.
13.方程3x(x-1)=2(x-1)的根是
14.对于函数y= ,当函数y﹤-3时,自变量x的取值范围是____________ .
15.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .
16.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
三、解答题(共8题,共72分)
17.(8分) (1)计算:
(2)先化简,再求值:,其中x是不等式的负整数解.
18.(8分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
(1)求证:EB=GD;
(2)若AB=5,AG=2,求EB的长.
19.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
(1)求抛物线的解析式;
(2)当PO+PC的值最小时,求点P的坐标;
(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
20.(8分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
21.(8分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
22.(10分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:
(1)图中的a=______,b=______.
(2)求快车在行驶的过程中S关于x的函数关系式.
(3)直接写出两车出发多长时间相距200km?
23.(12分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.
(1)求证:;
(2)当AC=2,CD=1时,求⊙O的面积.
24.现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率( )
A. B. C. D.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
2、B
【解析】
根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DCE=∠A,
∵∠ACB=90°,∠B=34°,
∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°,
故选B.
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
3、C
【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,MA
∵△ABC是等腰三角形,点D是BC边上的中点
∴
∴
解得
∵EF是线段AC的垂直平分线
∴点A关于直线EF的对称点为点C
∴
∵
∴AD的长为BM+MD的最小值
∴△CDM的周长最短
故选:C.
【点睛】
本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
4、A
【解析】
【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.
【详解】由正数大于零,零大于负数,得
,
最小的数是,
故选A.
【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.
5、A
【解析】
过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.
设OA=a,BF=b,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM==a,
∴点A的坐标为(a, a).
∵点A在反比例函数y=的图象上,
∴a×a=a2=12,
解得:a=5,或a=﹣5(舍去).
∴AM=8,OM=1.
∵四边形OACB是菱形,
∴OA=OB=10,BC∥OA,
∴∠FBN=∠AOB.
在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
∴FN=BF•sin∠FBN=b,BN==b,
∴点F的坐标为(10+b,b).
∵点F在反比例函数y=的图象上,
∴(10+b)×b=12,
S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10
故选A.
“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
6、C
【解析】
根据中位数的定义解答即可.
【详解】
解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
所以这些运动员跳高成绩的中位数是1.1.
故选:C.
【点睛】
本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
7、C
【解析】
分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A(0,2)代入
得:36a+2.6=2,
解得:
∴y与x的关系式为
当x=9时,
∴球能过球网,
当x=18时,
∴球会出界.
故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
8、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
9、C
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
67500一共5位,从而67500=6.75×104,
故选C.
10、D
【解析】
试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、15p
【解析】
试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.
故答案为15π.
考点:圆锥的计算.
12、
【解析】
用女生人数除以总人数即可.
【详解】
由题意得,恰好是女生的准考证的概率是.
故答案为:.
【点睛】
此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
13、x1=1,x2=-.
【解析】
试题解析:3x(x-1)=2(x-1)
3x(x-1)-2 (x-1) =0
(3x-2)(x-1)=0
3x-2=0,x-1=0
解得:x1=1,x2=-.
考点:解一元二次方程---因式分解法.
14、-
根据反比例函数的性质:y随x的增大而减小去解答.
【详解】
解:函数y= 中,y随x的增大而减小,当函数y﹤-3时
又函数y= 中,
故答案为:-
此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.
15、3.55×1.
【解析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
【详解】
3550000=3.55×1,
故答案是:3.55×1.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
16、1.
【解析】
分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.
详解:∵==,解得:旗杆的高度=×30=1.
故答案为1.
点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
三、解答题(共8题,共72分)
17、(1)5;(2),3.
【解析】
试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;
(2)先化简,再求得x的值,代入计算即可.
试题解析:
(1)原式=1-2+1×2+4=5;
(2)原式=×=,
当3x+7>1,即 x>-2时的负整数时,(x=-1)时,原式==3..
18、(1)证明见解析;(2) ;
【解析】
(1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5,根据勾股定理计算即可.
【详解】
(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
∴∠GAD=∠EAB,
在△GAD和△EAB中,,
∴△GAD≌△EAB,
∴EB=GD;
(2)∵四边形ABCD是正方形,AB=5,
∴BD⊥AC,AC=BD=5,
∴∠DOG=90°,OA=OD=BD=,
∵AG=2 ,
∴OG=OA+AG=,
由勾股定理得,GD==,
∴EB=.
【点睛】
本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.
19、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)D与P重合时有最小值,求出点D的坐标即可;
(3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
【详解】
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,且顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
(2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
∴当点P与点D重合时,PO+PC的值最小,
设直线AC的解析式为y=kx+b,
根据题意,得解得
∴直线AC的解析式为,
当x=2时,,
∴当PO+PC的值最小时,点P的坐标为(2,);
(3)存在.
①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
【点睛】
二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.
20、2m2+2m+5;1;
【解析】
先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.
【详解】
解:原式=2(m2﹣2m+1)+1m+3,
=2m2﹣4m+2+1m+3=2m2+2m+5,
∵m是方程2x2+2x﹣1=0的根,
∴2m2+2m﹣1=0,即2m2+2m=1,
∴原式=2m2+2m+5=1.
【点睛】
此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.
21、证明见解析.
【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【点睛】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
22、(1)a=6, b=;(2) ;(3)或5h
【解析】
(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;
(2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.
(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.
【详解】
解:(1)由s与x之间的函数的图像可知:
当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,
∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,
∴;
(2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),
∴设线段AB所在直线解析式为:S=kx+b,
∴
解得:k=-160,b=600,
设线段BC所在的直线的解析式为:S=kx+b,
∴
解得:k=160,b=-600,
设直线CD的解析式为:S=kx+b,
解得:k=60,b=0
∴
(3)当两车相遇前相距200km,
此时:S=-160x+600=200,解得:,
当两车相遇后相距200km,
此时:S=160x-600=200,解得:x=5,
∴或5时两车相距200千米
【点睛】
本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.
23、(1)证明见解析;(2).
【解析】
(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;
(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.
【详解】
证明:连接OD,
∵BC为圆O的切线,
∴OD⊥CB,
∵AC⊥CB,
∴OD∥AC,
∴∠CAD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠OAD,
则 ;
(2)解:连接ED,
在Rt△ACD中,AC=2,CD=1,
根据勾股定理得:AD= ,
∵∠CAD=∠OAD,∠ACD=∠ADE=90°,
∴△ACD∽△ADE,
∴,即AD2=AC•AE,
∴AE=,即圆的半径为 ,
则圆的面积为 .
【点睛】
此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.
24、A
【解析】
分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.
详解:由题意可得,
两次抽出的卡片所标数字不同的概率是:,
故选:A.
点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.
2022届浙江省台州仙居重点达标名校中考数学模拟预测题含解析: 这是一份2022届浙江省台州仙居重点达标名校中考数学模拟预测题含解析,共17页。试卷主要包含了在代数式 中,m的取值范围是等内容,欢迎下载使用。
2022届苏州高新区实验重点达标名校中考数学模拟预测题含解析: 这是一份2022届苏州高新区实验重点达标名校中考数学模拟预测题含解析,共25页。试卷主要包含了下列计算正确的是,用一根长为a等内容,欢迎下载使用。
2022届河南洛阳伊川达标名校中考数学模拟预测题含解析: 这是一份2022届河南洛阳伊川达标名校中考数学模拟预测题含解析,共30页。试卷主要包含了 1分等内容,欢迎下载使用。