年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届四川省南充市营山县春城北实验学校中考猜题数学试卷含解析

    2022届四川省南充市营山县春城北实验学校中考猜题数学试卷含解析第1页
    2022届四川省南充市营山县春城北实验学校中考猜题数学试卷含解析第2页
    2022届四川省南充市营山县春城北实验学校中考猜题数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省南充市营山县春城北实验学校中考猜题数学试卷含解析

    展开

    这是一份2022届四川省南充市营山县春城北实验学校中考猜题数学试卷含解析,共21页。试卷主要包含了的相反数是,6的相反数为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知x+=3,则x2+=(  )
    A.7 B.9 C.11 D.8
    2.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )

    A. B.
    C. D.
    3.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )

    A.40° B.60° C.80° D.100°
    4.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是(  )
    A.k>8 B.k≥8 C.k≤8 D.k<8
    5.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
    A. B.
    C. D.
    6.如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )

    A. B. C. D.
    7.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
    ①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是(  )

    A.1 B.2 C.3 D.4
    8.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )

    A. B. C. D.
    9.的相反数是(  )
    A.2 B.﹣2 C.4 D.﹣
    10.6的相反数为  
    A.-6 B.6 C. D.
    11.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为(  )

    A.60 n mile B.60 n mile C.30 n mile D.30 n mile
    12.如图,已知正五边形内接于,连结,则的度数是( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是 .
    14.写出一个比大且比小的有理数:______.
    15.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.

    16.反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=____.
    17.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.

    18.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.

    20.(6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
    21.(6分)综合与探究:
    如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
    (1)求A、B两点的坐标及直线l的表达式;
    (2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
    ①请直接写出A′的坐标(用含字母t的式子表示);
    ②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
    (3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.

    22.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
    23.(8分)已知,求代数式的值.
    24.(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
    (1)在这项调查中,共调查了多少名学生?
    (2)将两个统计图补充完整;
    (3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

    25.(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
    根据图中信息求出  ,  ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
    26.(12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
    27.(12分)如图,△ABC与△A1B1C1是位似图形.
    (1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
    (2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
    (3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据完全平方公式即可求出答案.
    【详解】
    ∵(x+)2=x2+2+
    ∴9=2+x2+,
    ∴x2+=7,
    故选A.
    【点睛】
    本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
    2、C
    【解析】
    分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.
    详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.
    B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.
    D、∵sin∠ABE=,
    ∵∠EBD=∠EDB
    ∴BE=DE
    ∴sin∠ABE=.
    由已知不能得到△ABE∽△CBD.故选C.
    点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.
    3、D
    【解析】
    根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵l1∥l2,
    ∴∠3=∠1=60°,
    ∴∠2=∠A+∠3=40°+60°=100°.
    故选D.

    【点睛】
    本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
    4、A
    【解析】
    本题考查反比例函数的图象和性质,由k-8>0即可解得答案.
    【详解】
    ∵反比例函数y=的图象位于第一、第三象限,
    ∴k-8>0,
    解得k>8,
    故选A.
    【点睛】
    本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    5、C
    【解析】
    试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
    考点:由实际问题抽象出分式方程.
    6、B
    【解析】
    根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.
    【详解】
    由图可知所给的平面图形是一个长方形,
    长方形绕一边所在直线旋转一周得圆柱,
    故选B.
    【点睛】
    本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.
    7、D
    【解析】
    如图连接OB、OD;

    ∵AB=CD,
    ∴=,故①正确
    ∵OM⊥AB,ON⊥CD,
    ∴AM=MB,CN=ND,
    ∴BM=DN,
    ∵OB=OD,
    ∴Rt△OMB≌Rt△OND,
    ∴OM=ON,故②正确,
    ∵OP=OP,
    ∴Rt△OPM≌Rt△OPN,
    ∴PM=PN,∠OPB=∠OPD,故④正确,
    ∵AM=CN,
    ∴PA=PC,故③正确,
    故选D.
    8、B
    【解析】
    根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
    【详解】
    解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
    ∴AC=A′C,
    ∴△ACA′是等腰直角三角形,
    ∴∠CAA′=45°,
    ∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
    ∴∠B=∠A′B′C=65°.
    故选B.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    9、A
    【解析】
    分析:根据只有符号不同的两个数是互为相反数解答即可.
    详解:的相反数是,即2.
    故选A.
    点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
    10、A
    【解析】
    根据相反数的定义进行求解.
    【详解】
    1的相反数为:﹣1.故选A.
    【点睛】
    本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.
    11、B
    【解析】
    如图,作PE⊥AB于E.
    在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
    ∴PE=AE=×60=n mile,
    在Rt△PBE中,∵∠B=30°,
    ∴PB=2PE=n mile.
    故选B.

    12、C
    【解析】
    根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
    【详解】
    ∵五边形为正五边形




    故选:C.
    【点睛】
    本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、m≤1.
    【解析】
    试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.
    考点:根的判别式.
    14、2
    【解析】
    直接利用接近和的数据得出符合题意的答案.
    【详解】
    解:到之间可以为:2(答案不唯一),
    故答案为:2(答案不唯一).
    【点睛】
    此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.
    15、
    【解析】
    ∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
    ∵∠CAC′=15°,
    ∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
    ∴阴影部分的面积=×5×tan30°×5=.
    16、4
    【解析】
    利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.
    【详解】
    把点(2,m)代入反比例函数和正比例函数中得,,,则.
    【点睛】
    本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.
    17、35
    【解析】
    分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.
    详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),
    则本次捐款20元的有:80−(20+10+15)=35(人),
    故答案为:35.
    点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.
    18、.
    【解析】
    试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求
    AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,
    在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,
    解得:x=,即AE=AF=,
    因此可求得=×AF×AB=××3=.
    考点:翻折变换(折叠问题)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)AD=2.
    【解析】
    (1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;
    (2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.
    【详解】
    (1)如图,连接OA,交BC于F,

    则OA=OB,
    ∴∠D=∠DAO,
    ∵∠D=∠C,
    ∴∠C=∠DAO,
    ∵∠BAE=∠C,
    ∴∠BAE=∠DAO,
    ∵BD是⊙O的直径,
    ∴∠BAD=90°,
    即∠DAO+∠BAO=90°,
    ∴∠BAE+∠BAO=90°,即∠OAE=90°,
    ∴AE⊥OA,
    ∴AE与⊙O相切于点A;
    (2)∵AE∥BC,AE⊥OA,
    ∴OA⊥BC,
    ∴,FB=BC,
    ∴AB=AC,
    ∵BC=2,AC=2,
    ∴BF=,AB=2,
    在Rt△ABF中,AF==1,
    在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
    ∴OB=4,
    ∴BD=8,
    ∴在Rt△ABD中,AD=.
    【点睛】
    本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.
    20、(1)20%;(2)能.
    【解析】
    (1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
    (2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
    【详解】
    (1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
    解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
    答:该企业从2014年到2016年利润的年平均增长率为20%.
    (2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
    所以该企业2017年的利润能超过3.4亿元.
    【点睛】
    此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
    21、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
    (2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
    (3)存在,P点坐标为(,)或(,﹣).
    【解析】
    (1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
    (2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
    ②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
    (3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
    【详解】
    (1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
    设直线l的解析式为y=kx+b,
    把A(﹣1,0),D(0,﹣)代入得,解得,
    ∴直线l的解析式为y=﹣x﹣;
    (2)①作A′H⊥x轴于H,如图,

    ∵OA=1,OD=,
    ∴∠OAD=60°,
    ∵EF∥AD,
    ∴∠AEF=60°,
    ∵点A 关于直线l的对称点为A′,
    ∴EA=EA′=t,∠A′EF=∠AEF=60°,
    在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
    ∴OH=OE+EH=t﹣1+t=t﹣1,
    ∴A′(t﹣1, t);
    ②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
    解得t1=0(舍去),t2=2,
    ∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
    此时四边形A′BEF为菱形,理由如下:
    当t=2时,A′点的坐标为(2,),E(1,0),
    ∵∠OEF=60°
    ∴OF=OE=,EF=2OE=2,
    ∴F(0,),
    ∴A′F∥x轴,
    ∵A′F=BE=2,A′F∥BE,
    ∴四边形A′BEF为平行四边形,
    而EF=BE=2,
    ∴四边形A′BEF为菱形;
    (3)存在,如图:

    当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
    ∵OE=t﹣1=,
    ∴此时P点坐标为(,);
    当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,

    ∵∠AEA′=120°,
    ∴∠A′EB=60°,
    ∴∠EBA′=30°
    ∴BQ=A′Q=•t=t,
    ∴t﹣1+t=3,解得t=,
    此时A′(1,),E(,0),
    点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
    综上所述,满足条件的P点坐标为(,)或(,﹣).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
    22、(1)1(2)10%.
    【解析】
    试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;
    (2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.
    试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得

    解得x=1.
    经检验,x=1是原方程的根.
    答:每张门票的原定票价为1元;
    (2)设平均每次降价的百分率为y,根据题意得
    1(1-y)2=324,
    解得:y1=0.1,y2=1.9(不合题意,舍去).
    答:平均每次降价10%.
    考点:1.一元二次方程的应用;2.分式方程的应用.
    23、12
    【解析】
    解:∵,∴.
    ∴.
    将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.
    24、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
    【解析】
    试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
    (2)先求出C的人数,再求出C的百分比即可;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
    试题解析:(1)根据题意得: 15÷30%=50(名).
    答;在这项调查中,共调查了50名学生;
    (2)图如下:

    (3)用A表示男生,B表示女生,画图如下:

    共有20种情况,同性别学生的情况是8种,
    则刚好抽到同性别学生的概率是.
    25、(1)100,35;(2)补全图形,如图;(3)800人
    【解析】
    (1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.
    【详解】
    解:(1)∵被调查总人数为m=10÷10%=100人,
    ∴用支付宝人数所占百分比n%= ,
    ∴m=100,n=35.
    (2)网购人数为100×15%=15人,
    微信人数所占百分比为,
    补全图形如图:

    (3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.
    【点睛】
    本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.
    26、(1)120件;(2)150元.
    【解析】
    试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
    试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
    由题意可得:,解得,经检验是原方程的根.
    (2)设每件衬衫的标价至少是元.
    由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
    由题意可得:
    解得:,所以,,即每件衬衫的标价至少是150元.
    考点:1、分式方程的应用 2、一元一次不等式的应用.
    27、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
    【解析】
    分析:(1)直接利用已知点位置得出B点坐标即可;
    (2)直接利用位似图形的性质得出对应点位置进而得出答案;
    (3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
    详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
    故答案为(﹣2,﹣5);
    (2)如图所示:△AB2C2,即为所求;
    (3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
    故答案为6+4.

    点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.

    相关试卷

    四川省南充市营山县春城北实验学校2023-2024学年九年级数学第一学期期末综合测试试题含答案:

    这是一份四川省南充市营山县春城北实验学校2023-2024学年九年级数学第一学期期末综合测试试题含答案,共9页。

    2023-2024学年四川省南充市营山县春城北实验学校数学八上期末质量检测试题含答案:

    这是一份2023-2024学年四川省南充市营山县春城北实验学校数学八上期末质量检测试题含答案,共7页。试卷主要包含了下列式子不正确的是等内容,欢迎下载使用。

    2022-2023学年四川省南充市营山县春城北实验学校数学七年级第二学期期末经典模拟试题含答案:

    这是一份2022-2023学年四川省南充市营山县春城北实验学校数学七年级第二学期期末经典模拟试题含答案,共6页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map