终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届山西农业大学附属学校中考数学全真模拟试题含解析

    立即下载
    加入资料篮
    2022届山西农业大学附属学校中考数学全真模拟试题含解析第1页
    2022届山西农业大学附属学校中考数学全真模拟试题含解析第2页
    2022届山西农业大学附属学校中考数学全真模拟试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山西农业大学附属学校中考数学全真模拟试题含解析

    展开

    这是一份2022届山西农业大学附属学校中考数学全真模拟试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax2+bx+c,规定等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.从 ,0,π, ,6这5个数中随机抽取一个数,抽到有理数的概率是(  )
    A. B. C. D.
    2.两个一次函数,,它们在同一直角坐标系中的图象大致是( )
    A. B. C. D.
    3.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是(  )
    A. B. C. D.
    4.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为(  )
    A.8.1×106 B.8.1×105 C.81×105 D.81×104
    5.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )

    A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)
    6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).

    A.50° B.40° C.30° D.25°
    7.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是(  )

    A.1 B.2 C.3 D.4
    8.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )

    A.①④ B.①③ C.①②③ D.②③④
    9.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x2+2x﹣8=0是倍根方程;
    ②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
    ③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);
    ④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.
    上述结论中正确的有(   )
    A.①② B.③④ C.②③ D.②④
    10.整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足( ).

    A. B. C. D.
    11.若,,则的值是(  )
    A.2 B.﹣2 C.4 D.﹣4
    12.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是(  )

    A.130° B.120° C.110° D.100°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 .
    14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.
    15.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为
      ▲  辆.
    16.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.
    17.如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)

    18.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠BAD=,且OC=4,求BD的长.

    20.(6分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
    (1)求抛物线y=ax2+bx+2的函数表达式;
    (2)求直线BC的函数表达式;
    (3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
    ①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
    ②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.

    21.(6分)求抛物线y=x2+x﹣2与x轴的交点坐标.
    22.(8分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:
    ① 教师讲,学生听
    ② 教师让学生自己做
    ③ 教师引导学生画图发现规律
    ④ 教师让学生对折纸,观察发现规律,然后画图
    为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图
    (1) 请将条形统计图补充完整;
    (2) 计算扇形统计图中方法③的圆心角的度数是 ;
    (3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?

    23.(8分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.

    (1)抛物线的对称轴是直线________;
    (2)当时,求抛物线的函数表达式;
    (3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.
    24.(10分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.
    (1)求点D沿三条圆弧运动到点G所经过的路线长;
    (2)判断线段GB与DF的长度关系,并说明理由.

    25.(10分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

    (1)求点B,C的坐标;
    (2)判断△CDB的形状并说明理由;
    (3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
    26.(12分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
    (2)解方程:x(x﹣4)=2x﹣8
    27.(12分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据有理数的定义可找出在从,0,π,,6这5个数中只有0、、6为有理数,再根据概率公式即可求出抽到有理数的概率.
    【详解】
    ∵在,0,π,,6这5个数中有理数只有0、、6这3个数,
    ∴抽到有理数的概率是,
    故选C.
    【点睛】
    本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.
    2、B
    【解析】
    根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.
    【详解】
    解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,
    所以,a、b异号,
    所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,
    B选项符合,
    D选项,a、b都经过第二、四象限,
    所以,两直线都与y轴负半轴相交,不符合.
    故选:B.
    【点睛】
    本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
    3、D
    【解析】
    A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
    4、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    810 000=8.1×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、C
    【解析】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

    直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),
    因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).
    再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).
    设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),
    所以,解得:,
    即可得直线CD′的解析式为y=﹣x﹣1.
    令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,
    所以点P的坐标为(﹣,0).故答案选C.
    考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
    6、B
    【解析】
    解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,
    根据平角为180°可得,∠2=90°﹣50°=40°.
    故选B.

    【点睛】
    本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.
    7、C
    【解析】
    试题解析:∵图象与x轴有两个交点,
    ∴方程ax2+bx+c=0有两个不相等的实数根,
    ∴b2﹣4ac>0,
    ∴4ac﹣b2<0,
    ①正确;
    ∵﹣=﹣1,
    ∴b=2a,
    ∵a+b+c<0,
    ∴b+b+c<0,3b+2c<0,
    ∴②是正确;
    ∵当x=﹣2时,y>0,
    ∴4a﹣2b+c>0,
    ∴4a+c>2b,
    ③错误;
    ∵由图象可知x=﹣1时该二次函数取得最大值,
    ∴a﹣b+c>am2+bm+c(m≠﹣1).
    ∴m(am+b)<a﹣b.故④正确
    ∴正确的有①②④三个,
    故选C.
    考点:二次函数图象与系数的关系.
    【详解】
    请在此输入详解!
    8、C
    【解析】
    根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
    【详解】
    解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
    观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
    则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
    所有点中,只有点D到A距离为2个单位,故③正确;
    因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
    故选:C.
    【点睛】
    本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
    9、C
    【解析】
    分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设=2,得到•=2=2,得到当=1时,=2,当=-1时,=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;
    详解:①由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=-2, ∵≠2,或≠2,
    ∴方程-2x-8=0不是倍根方程;故①错误;
    ②关于x的方程+ax+2=0是倍根方程, ∴设=2, ∴•=2=2, ∴=±1,
    当=1时,=2, 当=-1时,=-2, ∴+=-a=±3, ∴a=±3,故②正确;
    ③关于x的方程a-6ax+c=0(a≠0)是倍根方程, ∴=2,
    ∵抛物线y=a-6ax+c的对称轴是直线x=3, ∴抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故③正确;
    ④∵点(m,n)在反比例函数y=的图象上, ∴mn=4, 解m+5x+n=0得
    =,=, ∴=4, ∴关于x的方程m+5x+n=0不是倍根方程;
    故选C.
    点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.
    10、D
    【解析】
    根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.
    【详解】
    由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.
    故选D.
    【点睛】
    本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.
    11、D
    【解析】
    因为,所以,因为,故选D.
    12、D
    【解析】
    分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求
    详解:∵


    故选D.
    点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    试题分析:根据题意可得圆心角的度数为:,则S==1.
    考点:扇形的面积计算.
    14、1
    【解析】
    题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.
    【详解】
    ①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;
    ②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;
    故腰长为1.
    故答案为:1.
    【点睛】
    此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.
    15、2.85×2.
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).
    【详解】
    解:28500000一共8位,从而28500000=2.85×2.
    16、
    【解析】
    在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.
    【详解】
    ∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,
    ∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.
    故答案为.
    17、8π.
    【解析】
    试题分析: 因为AB为切线,P为切点,

    劣弧AB所对圆心角

    考点: 勾股定理;垂径定理;弧长公式.
    18、1
    【解析】
    【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
    【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
    ∴m1﹣1m=0且m≠0,
    解得,m=1,
    故答案是:1.
    【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)
    【解析】
    试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
    (2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
    试题解析:(1)连结OB,则OA=OB.如图1,

    ∵OP⊥AB,
    ∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
    在△PAO和△PBO中,
    ∵,
    ∴△PAO≌△PBO(SSS),
    ∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
    ∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
    (2)连结BE.如图2,

    ∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
    ∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
    ∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
    ∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
    ∵AC=BC,OA=OE,即OC为△ABE的中位线.
    ∴OC=BE,OC∥BE,∴BE=2OC=3.
    ∵BE∥OP,∴△DBE∽△DPO,
    ∴,即,解得BD=.
    20、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【解析】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
    (3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
    ②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
    【详解】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
    解得:a=﹣,b=,
    故函数的表达式为y=﹣x2+x+2;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
    解得:k=2,b=2,
    故:直线BC的函数表达式为y=2x+2,
    (3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
    则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
    ∴AE∥BC,而EP⊥BC,∴BP⊥AE
    而BP=AE,∴线段BP与线段AE的关系是相互垂直;
    ②设点P的横坐标为m,
    当P点在线段BC上时,
    P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
    直线MM′⊥BC,∴kMM′=﹣,
    直线MM′的方程为:y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    由题意得:PM′=PM=2m,
    PM′2=42+m2=(2m)2,此式不成立,
    或PM′2=m2+(2m+2)2=(2m)2,
    解得:m=﹣4±2,
    故点P的坐标为(﹣4±2,﹣8±4);
    当P点在线段BE上时,
    点P坐标为(m,﹣4),点M坐标为(m,2),
    则PM=6,
    直线MM′的方程不变,为y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    PM′2=m2+(6+m)2=(2m)2,
    解得:m=0,或﹣;
    或PM′2=42+42=(6)2,无解;
    故点P的坐标为(0,﹣4)或(﹣,﹣4);
    综上所述:
    点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【点睛】
    主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    21、(1,0)、(﹣2,0)
    【解析】
    试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可.
    试题解析:解:令,即.
    解得:,.
    ∴该抛物线与轴的交点坐标为(-2,0),(1,0).
    22、解:(1)见解析; (2) 108°;(3) 最喜欢方法④,约有189人.
    【解析】
    (1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);
    (2)求方法③的圆心角应先求所占比值,再乘以360°;
    (3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;
    【详解】
    (1)方法②人数为60−6−18−27=9(人);
    补条形图如图:

    (2)方法③的圆心角为
    故答案为108°
    (3)由图可以看出喜欢方法④的学生最多,人数为 (人);
    【点睛】
    考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.
    23、(1);(2);(3)
    【解析】
    (1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围.
    【详解】
    (1)∵抛物线的表达式为,
    ∴抛物线的对称轴为直线.
    故答案为:.
    (2)∵抛物线的对称轴为直线,,
    ∴点的坐标为,点的坐标为.
    将代入,得:,
    解得:,
    ∴抛物线的函数表达式为.
    (3)∵,
    ∴点的坐标为.
    ∵直线y=n与直线的交点的横坐标记为,且当时,总有,
    ∴x2

    相关试卷

    2023-2024学年山西农业大学附属学校九上数学期末质量跟踪监视试题含答案:

    这是一份2023-2024学年山西农业大学附属学校九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了下列事件是必然事件的是,的值为等内容,欢迎下载使用。

    山西农业大学附属学校2023-2024学年数学八上期末学业质量监测模拟试题含答案:

    这是一份山西农业大学附属学校2023-2024学年数学八上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了已知则的值为,分式有意义,x的取值范围是,若,且,则的值可能是,一元二次方程,经过配方可变形为等内容,欢迎下载使用。

    山西农业大学附属学校2022-2023学年数学七年级第二学期期末质量检测模拟试题含答案:

    这是一份山西农业大学附属学校2022-2023学年数学七年级第二学期期末质量检测模拟试题含答案,共6页。试卷主要包含了若,则下列式子成立的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map