终身会员
搜索
    上传资料 赚现金

    2022届山东威海市14中学中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    2022届山东威海市14中学中考数学最后冲刺浓缩精华卷含解析第1页
    2022届山东威海市14中学中考数学最后冲刺浓缩精华卷含解析第2页
    2022届山东威海市14中学中考数学最后冲刺浓缩精华卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东威海市14中学中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022届山东威海市14中学中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了的算术平方根为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列关于x的方程中一定没有实数根的是( )
    A. B. C. D.
    2.对于函数y=,下列说法正确的是(  )
    A.y是x的反比例函数 B.它的图象过原点
    C.它的图象不经过第三象限 D.y随x的增大而减小
    3.平面直角坐标系内一点关于原点对称点的坐标是( )
    A. B. C. D.
    4.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
    A.平均数是9 B.中位数是9 C.众数是5 D.极差是5
    5.下列几何体中,其三视图都是全等图形的是(  )
    A.圆柱 B.圆锥 C.三棱锥 D.球
    6.的算术平方根为( )
    A. B. C. D.
    7.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )
    A.12×10 B.1.2×10 C.1.2×10 D.0.12×10
    8.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(  )

    A. B. C. D.
    9.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )

    A.6 B.5 C.4 D.
    10.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为(   )
    A.1     B.-1   C.2    D.-2
    11.若分式在实数范围内有意义,则实数的取值范围是( )
    A. B. C. D.
    12.如图,在中,,的垂直平分线交于点,垂足为.如果,则的长为( )

    A.2 B.3 C.4 D.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为__________.

    14.已知方程的一个根为1,则的值为__________.
    15.若am=2,an=3,则am + 2n =______.
    16.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.

    17.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.

    18.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
    20.(6分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
    求证:BF=AG.

    21.(6分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.

    对雾霾了解程度的统计表
    对雾霾的了解程度
    百分比
    A.非常了解
    5%
    B.比较了解
    m
    C.基本了解
    45%
    D.不了解
    n
    请结合统计图表,回答下列问题:统计表中:m=   ,n=   ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
    22.(8分)《九章算术》中有这样一道题,原文如下:
    今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?
    请解答上述问题.
    23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 

    请根据所给信息,解答以下问题: 表中 ___ ;____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
    24.(10分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
    (1)甲、乙两种套房每套提升费用各多少万元?
    (2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
    (3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
    25.(10分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
    (1)求圆O的半径;
    (2)如果AE=6,求EF的长.

    26.(12分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

    27.(12分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.
    据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?
    在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据根的判别式的概念,求出△的正负即可解题.
    【详解】
    解: A. x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,
    B. , △=36-144=-1080,∴原方程没有实数根,
    C. , , △=10,∴原方程有两个不相等的实数根,
    D. , △=m2+80,∴原方程有两个不相等的实数根,
    故选B.
    【点睛】
    本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.
    2、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    3、D
    【解析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.
    【详解】
    解:根据关于原点对称的点的坐标的特点,
    ∴点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D.
    【点睛】
    本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.
    4、D
    【解析】
    分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
    平均数为(12+5+9+5+14)÷5=9,故选项A正确;
    重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
    5出现了2次,最多,∴众数是5,故选项C正确;
    极差为:14﹣5=9,故选项D错误.
    故选D
    5、D
    【解析】
    分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.
    详解:圆柱,圆锥,三棱锥,球中,
    三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,
    故选D.
    点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.
    6、B
    【解析】
    分析:先求得的值,再继续求所求数的算术平方根即可.
    详解:∵=2,
    而2的算术平方根是,
    ∴的算术平方根是,
    故选B.
    点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
    7、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    数据12000用科学记数法表示为1.2×104,故选:B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、B
    【解析】
    试题解析:如图所示:

    设BC=x,
    ∵在Rt△ABC中,∠B=90°,∠A=30°,
    ∴AC=2BC=2x,AB=BC=x,
    根据题意得:AD=BC=x,AE=DE=AB=x,
    作EM⊥AD于M,则AM=AD=x,
    在Rt△AEM中,cos∠EAD=;
    故选B.
    【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.
    9、D
    【解析】
    根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
    【详解】
    ∵ED是BC的垂直平分线,
    ∴DB=DC,
    ∴∠C=∠DBC,
    ∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBC,
    ∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
    ∴∠C=∠DBC=∠ABD=30°,
    ∴BD=2AD=6,
    ∴CD=6,
    ∴CE =3,
    故选D.
    【点睛】
    本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.
    10、A
    【解析】
    试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.
    故选A
    11、D
    【解析】
    根据分式有意义的条件即可求出答案.
    【详解】
    解:由分式有意义的条件可知:,

    故选:.
    【点睛】
    本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
    12、C
    【解析】
    先利用垂直平分线的性质证明BE=CE=8,再在Rt△BED中利用30°角的性质即可求解ED.
    【详解】
    解:因为垂直平分,
    所以,
    在中,,
    则;
    故选:C.
    【点睛】
    本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.
    【详解】
    如图,
    在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),
    ∵y=﹣x2+2x+3=﹣(x-1)2+4,
    ∴对称轴为x=1,顶点D(1,4),
    则点C关于对称轴的对称点E的坐标为(2,3),
    作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),
    连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,
    四边形EDFG的周长=DE+DF+FG+GE
    =DE+D′F+FG+GE′
    =DE+D′E′


    ∴四边形EDFG周长的最小值是.

    【点睛】
    本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.
    14、1
    【解析】
    欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.
    【详解】
    设方程的另一根为x1,又∵x=1,
    ∴,
    解得m=1.
    故答案为1.
    【点睛】
    本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x2-9x+m=0中求出m的值.
    15、18
    【解析】
    运用幂的乘方和积的乘方的运算法则求解即可.
    【详解】
    解:∵am=2,an=3,
    ∴a3m+2n=(am)3×(an)2=23×32=1.
    故答案为1.
    【点睛】
    本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键.
    16、50°
    【解析】
    根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
    【详解】
    解:∵AB=AC,∠BAC=80°,
    ∴∠B=∠C=(180°﹣80°)÷2=50°;
    ∵AD∥BC,
    ∴∠DAC=∠C=50°,
    故答案为50°.
    【点睛】
    本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.
    17、1
    【解析】
    根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
    【详解】
    根据题意,作△EFC,

    树高为CD,且∠ECF=90°,ED=3,FD=12,
    易得:Rt△EDC∽Rt△DCF,
    有,即DC2=ED×FD,
    代入数据可得DC2=31,
    DC=1,
    故答案为1.
    18、3或6
    【解析】
    分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.
    【详解】
    设AC和BE相交于点O.

    当P在OA上时,
    ∵AB=AD,∠A=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=9,OB=OD=BD=.
    则AO=.
    在直角△OBP中,OP=.
    则AP=OA-OP-;
    当P在OC上时,AP=OA+OP=.
    故答案是:3或6.
    【点睛】
    本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)这个游戏不公平,理由见解析.
    【解析】
    (1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.
    【详解】
    解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,
    故从袋中随机摸出一球,标号是1的概率为:;
    (2)这个游戏不公平.
    画树状图得:

    ∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,
    ∴P(甲胜)=,P(乙胜)=.
    ∴P(甲胜)≠P(乙胜),
    故这个游戏不公平.
    【点睛】
    本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
    20、见解析
    【解析】
    根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
    【详解】
    证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
    又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
    又∵∠BAC=90°,AE⊥CD,
    ∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
    ∴∠BAF=∠ACG. 又∵AB=CA,

    ∴△ABF≌△CAG(ASA),
    ∴BF=AG
    【点睛】
    此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
    21、(1)20;15%;35%;(2)见解析;(3)126°.
    【解析】
    (1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;
    (2)求出D的学生人数,然后补全统计图即可;
    (3)用D的百分比乘360°计算即可得解.
    【详解】
    解:(1)非常了解的人数为20,
    60÷400×100%=15%,
    1﹣5%﹣15%﹣45%=35%,
    故答案为20;15%;35%;
    (2)∵D等级的人数为:400×35%=140,
    ∴补全条形统计图如图所示:

    (3)D部分扇形所对应的圆心角:360°×35%=126°.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
    22、甲有钱,乙有钱.
    【解析】
    设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.
    【详解】
    解:设甲有钱,乙有钱.
    由题意得: ,
    解方程组得: ,
    答:甲有钱,乙有钱.
    【点睛】
    本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.
    23、(1)0.3,45;(2);(3)
    【解析】
    (1)根据频数的和为样本容量,频率的和为1,可直接求解;
    (2)根据频率可得到百分比,乘以360°即可;
    (3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.
    【详解】
    (1)a=0.3,b=45
    (2)360°×0.3=108°
    (3)列关系表格为:

    由表格可知,满足题意的概率为:.
    考点:1、频数分布表,2、扇形统计图,3、概率
    24、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.
    【解析】
    试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;
    (2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;
    (3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.
    (1)设甲种套房每套提升费用为x万元,依题意,

    解得:x=25
    经检验:x=25符合题意,
    x+3=28;
    答:甲,乙两种套房每套提升费用分别为25万元,28万元.
    (2)设甲种套房提升套,那么乙种套房提升(m-48)套,
    依题意,得
    解得:48≤m≤50
    即m=48或49或50,所以有三种方案分别
    是:方案一:甲种套房提升48套,乙种套房提升32套.
    方案二:甲种套房提升49套,乙种套房提升1.
    套方案三:甲种套房提升50套,乙种套房提升30套.
    设提升两种套房所需要的费用为W.

    所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:

    当a=3时,三种方案的费用一样,都是2240万元.
    当a>3时,取m=48时费用W最省.
    当0<a<3时,取m=50时费用最省.
    考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.
    25、 (1) 圆的半径为4.5;(2) EF=.
    【解析】
    (1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
    (2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
    【详解】
    (1)连接OD,
    ∵直径AB⊥弦CD,CD=4,
    ∴DH=CH=CD=2,
    在Rt△ODH中,AH=5,
    设圆O的半径为r,
    根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
    解得:r=4.5,
    则圆的半径为4.5;
    (2)过O作OG⊥AE于G,
    ∴AG=AE=×6=3,
    ∵∠A=∠A,∠AGO=∠AHF,
    ∴△AGO∽△AHF,
    ∴,
    ∴,
    ∴AF=,
    ∴EF=AF﹣AE=﹣6=.

    【点睛】
    本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.
    26、(1)详见解析;(2)tan∠ADP=.
    【解析】
    (1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;
    (2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.
    【详解】
    (1)证明:∵AE垂直平分BF,
    ∴AB=AF,
    ∴∠BAE=∠FAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠FAE=∠AEB,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴AF=BE.
    ∵AF∥BC,
    ∴四边形ABEF是平行四边形.
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)解:作PH⊥AD于H,
    ∵四边形ABEF是菱形,∠ABC=60°,AB=4,
    ∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
    ∴AP=AB=2,
    ∴PH=,DH=5,
    ∴tan∠ADP==.

    【点睛】
    本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.
    27、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.
    【解析】
    (1)设每盒售价应为x元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;
    (2)根据总利润=每盒利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.
    【详解】
    解:设每盒售价元.
    依题意得:
    解得:
    答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元
    依题意:
    令:
    化简:
    解得:(舍)

    答:的值为.
    【点睛】
    考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.

    相关试卷

    2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年山东省枣庄市薛城区中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年山东省枣庄市薛城区中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法错误的是等内容,欢迎下载使用。

    2022届安徽阜阳鸿升中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届安徽阜阳鸿升中学中考数学最后冲刺浓缩精华卷含解析,共24页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map