|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届山东省济南市天桥区十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2022届山东省济南市天桥区十校联考最后数学试题含解析01
    2022届山东省济南市天桥区十校联考最后数学试题含解析02
    2022届山东省济南市天桥区十校联考最后数学试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省济南市天桥区十校联考最后数学试题含解析

    展开
    这是一份2022届山东省济南市天桥区十校联考最后数学试题含解析,共26页。试卷主要包含了已知,方程的解是.,下列运算正确的是,下列方程中有实数解的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列图形是中心对称图形的是( )
    A. B. C. D.
    2.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是(  )
    A.m+n<0 B.m+n>0 C.m<n D.m>n
    3.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是(  )
    A.m>﹣2 B.m<﹣2
    C.m>2 D.m<2
    4.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是(  )

    A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
    5.方程的解是( ).
    A. B. C. D.
    6.下列运算正确的是(  )
    A.a4+a2=a4 B.(x2y)3=x6y3
    C.(m﹣n)2=m2﹣n2 D.b6÷b2=b3
    7.如图,等边△ABC内接于⊙O,已知⊙O的半径为2,则图中的阴影部分面积为(   )

    A.  B.  C.  D.
    8.下列方程中有实数解的是(  )
    A.x4+16=0 B.x2﹣x+1=0
    C. D.
    9.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

    A. B. C. D.
    10.数轴上有A,B,C,D四个点,其中绝对值大于2的点是(  )

    A.点A B.点B C.点C D.点D
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.
    12.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).

    13.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.

    14.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.
    其中正确的是______.(填序号)

    15.的相反数是_____.
    16.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
    x

    ﹣3
    ﹣2
    0
    1
    3
    5

    y

    7
    0
    ﹣8
    ﹣9
    ﹣5
    7

    则二次函数y=ax2+bx+c在x=2时,y=______.
    三、解答题(共8题,共72分)
    17.(8分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
    求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
    18.(8分)如图,在平面直角坐标系xOy中,直线与函数的图象的两个交点分别为A(1,5),B.
    (1)求,的值;
    (2)过点P(n,0)作x轴的垂线,与直线和函数的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围.

    19.(8分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
    20.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
    (1)转动转盘一次,求转出的数字是-2的概率;
    (2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

    21.(8分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
    (1)求证:CB平分∠ACE;
    (2)若BE=3,CE=4,求O的半径.

    22.(10分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
    (1)试判断CD与圆O的位置关系,并说明理由;
    (2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.

    23.(12分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.

    (1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;
    (2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
    (3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.
    24.两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
    A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选B.
    考点:中心对称图形.
    【详解】
    请在此输入详解!
    2、D
    【解析】
    根据反比例函数的性质,可得答案.
    【详解】
    ∵y=−的k=-2<1,图象位于二四象限,a<1,
    ∴P(a,m)在第二象限,
    ∴m>1;
    ∵b>1,
    ∴Q(b,n)在第四象限,
    ∴n<1.
    ∴n<1<m,
    即m>n,
    故D正确;
    故选D.
    【点睛】
    本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
    3、B
    【解析】
    根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
    【详解】
    ∵函数的图象在其象限内y的值随x值的增大而增大,
    ∴m+1<0,
    解得m<-1.
    故选B.
    4、D
    【解析】
    ①首先利用已知条件根据边角边可以证明△APD≌△AEB;
    ②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
    ③利用全等三角形的性质和对顶角相等即可判定③说法正确;
    ④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
    ⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.
    【详解】
    由边角边定理易知△APD≌△AEB,故①正确;
    由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
    所以∠BEP=90°,
    过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
    在△AEP中,由勾股定理得PE=,
    在△BEP中,PB= ,PE=,由勾股定理得:BE=,
    ∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
    ∴∠AEP=45°,
    ∴∠BEF=180°-45°-90°=45°,
    ∴∠EBF=45°,
    ∴EF=BF,
    在△EFB中,由勾股定理得:EF=BF=,
    故②是错误的;
    因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
    由△APD≌△AEB,
    ∴PD=BE=,
    可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
    连接BD,则S△BPD=PD×BE= ,
    所以S△ABD=S△APD+S△APB+S△BPD=2+,
    所以S正方形ABCD=2S△ABD=4+ .
    综上可知,正确的有①③⑤.

    故选D.
    【点睛】
    考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.
    5、B
    【解析】
    直接解分式方程,注意要验根.
    【详解】
    解:=0,
    方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
    解这个一元一次方程,得:x=,
    经检验,x=是原方程的解.
    故选B.
    【点睛】
    本题考查了解分式方程,解分式方程不要忘记验根.
    6、B
    【解析】
    分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.
    详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;
    根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;
    根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;
    根据同底数幂的除法,可知b6÷b2=b4,不正确.
    故选B.
    点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.
    7、A
    【解析】解:连接OB、OC,连接AO并延长交BC于H,则AH⊥BC.

    ∵△ABC是等边三角形,∴BH=AB=,OH=1,∴△OBC的面积= ×BC×OH=,则△OBA的面积=△OAC的面积=△OBC的面积=,由圆周角定理得,∠BOC=120°,∴图中的阴影部分面积==.故选A.
    点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.
    8、C
    【解析】
    A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.
    【详解】
    A.中△=02﹣4×1×16=﹣64<0,方程无实数根;
    B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;
    C.x=﹣1是方程的根;
    D.当x=1时,分母x2-1=0,无实数根.
    故选:C.
    【点睛】
    本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.
    9、A
    【解析】
    解:∵AE平分∠BAD,
    ∴∠DAE=∠BAE;
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠BEA=∠DAE=∠BAE,
    ∴AB=BE=6,
    ∵BG⊥AE,垂足为G,
    ∴AE=2AG.
    在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
    ∴AG==2,
    ∴AE=2AG=4;
    ∴S△ABE=AE•BG=.
    ∵BE=6,BC=AD=9,
    ∴CE=BC﹣BE=9﹣6=3,
    ∴BE:CE=6:3=2:1,
    ∵AB∥FC,
    ∴△ABE∽△FCE,
    ∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
    故选A.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
    10、A
    【解析】
    根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.
    【详解】
    解:∵绝对值等于2的数是﹣2和2,
    ∴绝对值等于2的点是点A.
    故选A.
    【点睛】
    此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3或6
    【解析】
    分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.
    【详解】
    设AC和BE相交于点O.

    当P在OA上时,
    ∵AB=AD,∠A=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=9,OB=OD=BD=.
    则AO=.
    在直角△OBP中,OP=.
    则AP=OA-OP-;
    当P在OC上时,AP=OA+OP=.
    故答案是:3或6.
    【点睛】
    本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.
    12、100+100
    【解析】
    【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.
    【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,
    ∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,
    ∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,
    ∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,
    ∴AB=AD+DB=100+100(米),
    故答案为:100+100.
    【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.
    13、-6
    【解析】
    因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:
    ,解得
    14、①②④
    【解析】
    ①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断
    ②由旋转得出AD=AF, ∠DAE=∠EAF,及公共边即可证明
    ③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明
    ④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定④正确
    【详解】
    由旋转,可知:∠CAD=∠BAF.
    ∵∠BAC=90°,∠DAE=45°,
    ∴∠CAD+∠BAE=45°,
    ∴∠BAF+∠BAE=∠EAF=45°,结论①正确;
    ②由旋转,可知:AD=AF
    在△AED和△AEF中,
    ∴△AED≌△AEF(SAS),结论②正确;
    ③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°两个条件,
    无法证出△ABE∽△ACD,结论③错误;
    ④由旋转,可知:CD=BF,∠ACD=∠ABF=45°,
    ∴∠EBF=∠ABE+∠ABF=90°,
    ∴BF1+BE1=EF1.
    ∵△AED≌△AEF,
    EF=DE,
    又∵CD=BF,
    ∴BE1+DC1=DE1,结论④正确.
    故答案为:①②④
    【点睛】
    本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键
    15、
    【解析】
    根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    的相反数是−.
    故答案为−.
    【点睛】
    本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.
    16、﹣1
    【解析】
    试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
    解:∵x=﹣3时,y=7;x=5时,y=7,
    ∴二次函数图象的对称轴为直线x=1,
    ∴x=0和x=2时的函数值相等,
    ∴x=2时,y=﹣1.
    故答案为﹣1.

    三、解答题(共8题,共72分)
    17、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【解析】
    (1)根据题意得出方程组,求出b、c的值,即可求出答案;
    (2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;
    (3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.
    【详解】
    解:(1)由题意得:,
    解得:,
    ∴抛物线的解析式为y=-x2+2x+2;
    (2)∵由y=-x2+2x+2得:当x=0时,y=2,
    ∴B(0,2),
    由y=-(x-1)2+3得:C(1,3),
    ∵A(3,-1),
    ∴AB=3,BC=,AC=2,
    ∴AB2+BC2=AC2,
    ∴∠ABC=90°,
    ∴△ABC是直角三角形;
    (3)①如图,当点Q在线段AP上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==1,
    ∴PE=AD=1
    ∵由-x2+2x+2=1得:x=1,
    ∴P(1+,1)或(1-,1),
    ②如图,当点Q在PA延长线上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=3AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==3,
    ∴PE=3AD=3
    ∵由-x2+2x+2=-3得:x=1±,
    ∴P(1+,-3),或(1-,-3),
    综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【点睛】
    本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.
    18、(1),;(2)0<n<1或者n>1.
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)利用图象法即可解决问题;
    【详解】
    解:(1)∵A(1,1)在直线上,
    ∴,
    ∵A(1,1)在的图象上,
    ∴.
    (2)观察图象可知,满足条件的n的值为:0<n<1或者n>1.

    【点睛】
    此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解.
    19、至少涨到每股6.1元时才能卖出.
    【解析】
    根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.
    【详解】
    解:设涨到每股x元时卖出,
    根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,
    解这个不等式得x≥,
    即x≥6.1.
    答:至少涨到每股6.1元时才能卖出.
    【点睛】
    本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.
    20、(1);(2).
    【解析】
    【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
    (2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
    【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
    所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
    ∴转动转盘一次,求转出的数字是-2的概率为=;
    (2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
    第一次 第二次
    1
    -2
    3
    1
    (1,1)
    (1,-2)
    (1,3)
    -2
    (-2,1)
    (-2,-2)
    (-2,3)
    3
    (3,1)
    (3,-2)
    (3,3)
    由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
    【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1)证明见解析;(2).
    【解析】
    试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
    (2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
    (1)证明:如图1,连接OB,

    ∵AB是⊙0的切线,
    ∴OB⊥AB,
    ∵CE丄AB,
    ∴OB∥CE,
    ∴∠1=∠3,
    ∵OB=OC,
    ∴∠1=∠2,
    ∴∠2=∠3,
    ∴CB平分∠ACE;
    (2)如图2,连接BD,

    ∵CE丄AB,
    ∴∠E=90°,
    ∴BC===5,
    ∵CD是⊙O的直径,
    ∴∠DBC=90°,
    ∴∠E=∠DBC,
    ∴△DBC∽△CBE,
    ∴,
    ∴BC2=CD•CE,
    ∴CD==,
    ∴OC==,
    ∴⊙O的半径=.
    考点:切线的性质.
    22、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=.
    【解析】
    (1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;
    (2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.
    【详解】
    (1)CD与圆O的位置关系是相切,
    理由是:连接OC,

    ∵OA=OC,
    ∴∠OCA=∠CAB,
    ∵∠CAB=∠CAD,
    ∴∠OCA=∠CAD,
    ∴OC∥AD,
    ∵CD⊥AD,
    ∴OC⊥CD,
    ∵OC为半径,
    ∴CD与圆O的位置关系是相切;
    (2)连接BC,

    ∵AB是⊙O的直径,
    ∴∠BCA=90°,
    ∵圆O的半径为3,
    ∴AB=6,
    ∵∠CAB=30°,

    ∵∠BCA=∠CDA=90°,∠CAB=∠CAD,
    ∴△CAB∽△DAC,



    【点睛】
    本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.
    23、(1)(2)(3) .
    【解析】
    (1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是△ABC的重心,然后求得BE的长.
    (2)过点B作BF∥CA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PD⊥AB,D是边AB的中点,在△ABC中可求得cosA的值.
    (3)由,∠PBD=∠ABP,证得△PBD∽△ABP,再证明△DPE∽△DCP得到,PD可求.
    【详解】
    解:(1)∵P为AC的中点,AC=8,
    ∴CP=4,
    ∵∠ACB=90°,BC=6,
    ∴BP=,
    ∵D是边AB的中点,P为AC的中点,
    ∴点E是△ABC的重心,
    ∴,
    (2)过点B作BF∥CA交CD的延长线于点F,

    ∴,
    ∵BD=DA,
    ∴FD=DC,BF=AC,
    ∵CE=2,ED=3,则CD=5,
    ∴EF=8,
    ∴,
    ∴,
    ∴,设CP=k,则PA=3k,
    ∵PD⊥AB,D是边AB的中点,
    ∴PA=PB=3k,
    ∴,
    ∴,
    ∵,
    ∴,
    (3)∵∠ACB=90°,D是边AB的中点,
    ∴,
    ∵,
    ∴,
    ∵∠PBD=∠ABP,
    ∴△PBD∽△ABP,
    ∴∠BPD=∠A,
    ∵∠A=∠DCA,
    ∴∠DPE=∠DCP,
    ∵∠PDE=∠CDP,
    △DPE∽△DCP,
    ∴,
    ∵DE=3,DC=5,
    ∴.

    【点睛】
    本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.
    24、(1)k=2;(2)点D经过的路径长为.
    【解析】
    (1)根据题意求得点B的坐标,再代入求得k值即可;
    (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
    【详解】
    (1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
    ∴AB=OA=OC=OD=,
    ∴点B坐标为(,),
    代入得k=2;
    (2)设平移后与反比例函数图象的交点为D′,
    由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,

    ∵OC=OD=,∠AOB=∠COM=45°,
    ∴OM=MC=MD=1,
    ∴D坐标为(﹣1,1),
    设D′横坐标为t,则OE=MF=t,
    ∴D′F=DF=t+1,
    ∴D′E=D′F+EF=t+2,
    ∴D′(t,t+2),
    ∵D′在反比例函数图象上,
    ∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
    ∴D′(﹣1, +1),
    ∴DD′=,
    即点D经过的路径长为.
    【点睛】
    本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.

    相关试卷

    山东省济南市钢城区实验校2021-2022学年十校联考最后数学试题含解析: 这是一份山东省济南市钢城区实验校2021-2022学年十校联考最后数学试题含解析,共21页。试卷主要包含了下列判断错误的是等内容,欢迎下载使用。

    山东省泰安泰山区七校联考2022年十校联考最后数学试题含解析: 这是一份山东省泰安泰山区七校联考2022年十校联考最后数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。

    山东省临沂兰陵县联考2022年十校联考最后数学试题含解析: 这是一份山东省临沂兰陵县联考2022年十校联考最后数学试题含解析,共15页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,方程的解为,下列说法中不正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map