终身会员
搜索
    上传资料 赚现金

    2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析

    立即下载
    加入资料篮
    2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析第1页
    2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析第2页
    2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析

    展开

    这是一份2022届江苏省苏州昆山市达标名校中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,tan45°的值等于,下列运算结果正确的是,下列计算,正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列函数中,y随着x的增大而减小的是( )
    A.y=3x B.y=﹣3x C. D.
    2.下列命题中,真命题是( )
    A.对角线互相垂直且相等的四边形是正方形
    B.等腰梯形既是轴对称图形又是中心对称图形
    C.圆的切线垂直于经过切点的半径
    D.垂直于同一直线的两条直线互相垂直
    3.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为( )

    A.6 B.8 C.10 D.12
    4.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为(  )

    A. B. C. D.
    5.tan45°的值等于(  )
    A. B. C. D.1
    6.下列运算结果正确的是( )
    A.3a2-a2 = 2 B.a2·a3= a6 C.(-a2)3 = -a6 D.a2÷a2 = a
    7.下列基本几何体中,三视图都是相同图形的是(  )
    A. B. C. D.
    8.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是(  )

    A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)
    9.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
    A. B. C. D.
    10.下列计算,正确的是(  )
    A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若反比例函数y=的图象位于第一、三象限,则正整数k的值是_____.
    12.分解因式:3m2﹣6mn+3n2=_____.
    13.若分式有意义,则实数x的取值范围是_______.
    14.如图,在中,,, ,,,点在上,交于点,交于点,当时,________.

    15.计算:cos245°-tan30°sin60°=______.
    16.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
    三、解答题(共8题,共72分)
    17.(8分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
    T恤
    每件的售价/元
    每件的成本/元


    50


    60

    (1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
    18.(8分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.
    (1)求证:AD=CD;
    (2)若AB=10,OE=3,求tan∠DBC的值.

    19.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.

    20.(8分)解方程:.
    21.(8分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.
    (1)求抛物线的表达式;
    (2)如图,当CP//AO时,求∠PAC的正切值;

    (3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.
    22.(10分)【发现证明】
    如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.
    小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.
    【类比引申】
    (1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;
    【联想拓展】
    (2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.

    23.(12分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
    (1)求抛物线的函数表达式;
    (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
    ①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
    ②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

    24.如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.

    (1)如图1,当点E在边BC上时,求证DE=EB;
    (2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
    (1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;
    B、y=﹣3x,y随着x的增大而减小,正确;
    C、,每个象限内,y随着x的增大而减小,故此选项错误;
    D、,每个象限内,y随着x的增大而增大,故此选项错误;
    故选B.
    考点:反比例函数的性质;正比例函数的性质.
    2、C
    【解析】
    分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
    解答:解:A、错误,例如对角线互相垂直的等腰梯形;
    B、错误,等腰梯形是轴对称图形不是中心对称图形;
    C、正确,符合切线的性质;
    D、错误,垂直于同一直线的两条直线平行.
    故选C.
    3、B
    【解析】
    由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.
    【详解】
    ∵矩形AEHC是由三个全等矩形拼成的,
    ∴AB=BD=CD,AE∥BF∥DG∥CH,
    ∴∠BQP=∠DMK=∠CHN,
    ∴△ABQ∽△ADM,△ABQ∽△ACH,
    ∴,,
    ∵EF=FG= BD=CD,AC∥EH,
    ∴四边形BEFD、四边形DFGC是平行四边形,
    ∴BE∥DF∥CG,
    ∴∠BPQ=∠DKM=∠CNH,
    又∵∠BQP=∠DMK=∠CHN,
    ∴△BPQ∽△DKM,△BPQ∽△CNH,
    ∴,,
    即,,

    ∴,即,
    解得:,
    ∴,
    故选:B.
    【点睛】
    本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.
    4、B
    【解析】
    先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
    【详解】
    解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
    ∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
    故选B.
    【点睛】
    本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
    5、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:tan45°=1,
    故选D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    6、C
    【解析】
    选项A, 3a2-a2 = 2 a2;选项B, a2·a3= a5;选项C, (-a2)3 = -a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.
    7、C
    【解析】
    根据主视图、左视图、俯视图的定义,可得答案.
    【详解】
    球的三视图都是圆,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.
    8、B
    【解析】
    分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.
    详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,
    又∵A的坐标是(1,1),
    结合中点坐标公式可得P1的坐标是(1,0);
    同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.
    根据对称关系,依次可以求得:
    P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),
    令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),
    ∵1010=4×501+1,
    ∴点P1010的坐标是(1010,﹣1),
    故选:B.
    点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.
    9、B
    【解析】
    分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
    详解:画树状图,得

    ∴共有8种情况,经过每个路口都是绿灯的有一种,
    ∴实际这样的机会是.
    故选B.
    点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
    10、C
    【解析】
    解:A.故错误;
    B. 故错误;
    C.正确;
    D.
    故选C.
    【点睛】
    本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.
    【详解】
    解:∵反比例函数的图象在一、三象限,
    ∴2﹣k>0,即k<2.
    又∵k是正整数,
    ∴k的值是:1.
    故答案为:1.
    【点睛】
    本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
    12、3(m-n)2
    【解析】
    原式==
    故填:
    13、
    【解析】
    由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
    解:∵分式有意义,
    ∴x-1≠2,即x≠1.
    故答案为x≠1.
    本题主要考查分式有意义的条件:分式有意义,分母不能为2.
    14、1
    【解析】
    如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.
    【详解】
    如图,作PQ⊥AB于Q,PR⊥BC于R.

    ∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.
    ∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.
    故答案为:1.
    【点睛】
    本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.
    15、0
    【解析】
    直接利用特殊角的三角函数值代入进而得出答案.
    【详解】
    = .
    故答案为0.
    【点睛】
    此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.
    16、一
    【解析】
    试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
    ∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
    ∴k﹣1<0且k+1<0, 解得:k<﹣1,
    ∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
    考点:一次函数的性质

    三、解答题(共8题,共72分)
    17、(1)10750;(2);(3)最大利润为10750元.
    【解析】
    (1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
    (2)根据题意,分两种情况进行讨论:①0 (3)求出(2)中各函数最大值,进行比较即可得到结论.
    【详解】
    (1)∵甲种T恤进货250件
    ∴乙种T恤进货量为:400-250=150件
    故由题意得,;
    (2)①
    ②;
    故.
    (3)由题意,,①,,
    ②,
    综上,最大利润为10750元.
    【点睛】
    本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.
    18、(1)见解析;(2)tan∠DBC=.
    【解析】
    (1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到,从而有AD=CD;
    (2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.
    【详解】
    (1)证明:∵AB为直径,
    ∴∠ACB=90°,
    ∵OD∥BC,
    ∴∠AEO=∠ACB=90°,
    ∴OE⊥AC,
    ∴,
    ∴AD=CD;
    (2)解:∵AB=10,
    ∴OA=OD=5,
    ∴DE=OD﹣OE=5﹣3=2,
    在Rt△OAE中,AE==4,
    ∴tan∠DAE=,
    ∵∠DAC=∠DBC,
    ∴tan∠DBC=.
    【点睛】
    垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.
    19、(1)证明见试题解析;(2)1.
    【解析】
    试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
    试题解析:(1)∵AB=DC,∴AC=DB,
    在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
    ∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
    ∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
    ∴当BE=1时,四边形BFCE是菱形,
    故答案为1.
    【考点】
    平行四边形的判定;菱形的判定.
    20、x=,x=﹣2
    【解析】
    方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】

    则2x(x+1)=3(1﹣x),
    2x2+5x﹣3=0,
    (2x﹣1)(x+3)=0,
    解得:x1=,x2=﹣3,
    检验:当x=,x=﹣2时,2(x+1)(1﹣x)均不等于0,
    故x=,x=﹣2都是原方程的解.
    【点睛】
    本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.
    21、(1)抛物线的表达式为;(2);(3)P点的坐标是.
    【解析】
    分析:
    (1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;
    (2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,结合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;
    (3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.
    详解:
    (1)∵直线y=x+1经过点A、C,点A在x轴上,点C在y轴上
    ∴A点坐标是(﹣1,0),点C坐标是(0,1),
    又∵抛物线过A,C两点,

    解得,
    ∴抛物线的表达式为;
    (2)作PH⊥AC于H,
    ∵点C、P在抛物线上,CP//AO, C(0,1),A(-1,0)
    ∴P(-2,1),AC=,
    ∴PC=2,,
    ∴PH=,
    ∵A(﹣1,0),C(0,1),
    ∴∠CAO=15°.
    ∵CP//AO,
    ∴∠ACP=∠CAO=15°,
    ∵PH⊥AC,
    ∴CH=PH=,
    ∴.
    ∴;

    (3)∵,
    ∴抛物线的对称轴为直线,
    ∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,
    ∴PQ∥AO,且PQ=AO=1.
    ∵P,Q都在抛物线上,
    ∴P,Q关于直线对称,
    ∴P点的横坐标是﹣3,
    ∵当x=﹣3时,,
    ∴P点的坐标是.

    点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt△APH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ∥AO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.
    【详解】
    请在此输入详解!
    22、(1)DF=EF+BE.理由见解析;(2)CF=1.
    【解析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
    (2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.
    解:(1)DF=EF+BE.理由:如图1所示,

    ∵AB=AD,
    ∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
    ∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,
    ∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,
    ∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,
    在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;
    (2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,

    ∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,
    ∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;
    又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,
    在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,
    ∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.
    “点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
    23、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
    【解析】
    (1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
    (2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
    ②直接写出满足条件的F点的坐标即可,注意不要漏写.
    【详解】
    解:(1)将A、C两点坐标代入抛物线,得 ,
    解得: ,
    ∴抛物线的解析式为y=﹣x2+x+8;
    (2)①∵OA=8,OC=6,
    ∴AC= =10,
    过点Q作QE⊥BC与E点,则sin∠ACB = = =,
    ∴ =,
    ∴QE=(10﹣m),
    ∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
    ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
    ∴当m=5时,S取最大值;
    在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
    ∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
    D的坐标为(3,8),Q(3,4),
    当∠FDQ=90°时,F1(,8),
    当∠FQD=90°时,则F2(,4),
    当∠DFQ=90°时,设F(,n),
    则FD2+FQ2=DQ2,
    即+(8﹣n)2++(n﹣4)2=16,
    解得:n=6± ,
    ∴F3(,6+),F4(,6﹣),
    满足条件的点F共有四个,坐标分别为
    F1(,8),F2(,4),F3(,6+),F4(,6﹣).

    【点睛】
    本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
    24、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
    【解析】
    (1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
    (2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
    (1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
    【详解】
    (1)∵△CDE是等边三角形,
    ∴∠CED=60°,
    ∴∠EDB=60°﹣∠B=10°,
    ∴∠EDB=∠B,
    ∴DE=EB;
    (2) ED=EB, 理由如下:
    取AB的中点O,连接CO、EO,
    ∵∠ACB=90°,∠ABC=10°,
    ∴∠A=60°,OC=OA,
    ∴△ACO为等边三角形,
    ∴CA=CO,
    ∵△CDE是等边三角形,
    ∴∠ACD=∠OCE,
    ∴△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,
    ∴△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB;
    (1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB,
    ∵EH⊥AB,
    ∴DH=BH=1,
    ∵GE∥AB,
    ∴∠G=180°﹣∠A=120°,
    ∴△CEG≌△DCO,
    ∴CG=OD,
    设CG=a,则AG=5a,OD=a,
    ∴AC=OC=4a,
    ∵OC=OB,
    ∴4a=a+1+1,
    解得,a=2,
    即CG=2.


    相关试卷

    江苏省无锡市重点达标名校2022年中考押题数学预测卷含解析:

    这是一份江苏省无锡市重点达标名校2022年中考押题数学预测卷含解析,共24页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    江苏省苏州市常熟达标名校2021-2022学年中考数学押题试卷含解析:

    这是一份江苏省苏州市常熟达标名校2021-2022学年中考数学押题试卷含解析,共21页。试卷主要包含了如图,已知直线l1,下列各运算中,计算正确的是等内容,欢迎下载使用。

    2022届苏州市高新区市级名校中考押题数学预测卷含解析:

    这是一份2022届苏州市高新区市级名校中考押题数学预测卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map