2022届江苏省常州市武进区洛阳初级中学中考数学最后一模试卷含解析
展开
这是一份2022届江苏省常州市武进区洛阳初级中学中考数学最后一模试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列各数是不等式组的解是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )
A.14° B.15° C.16° D.17°
2.下列关于x的方程一定有实数解的是( )
A. B.
C. D.
3.若与 互为相反数,则x的值是( )
A.1 B.2 C.3 D.4
4.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
5.下列实数为无理数的是 ( )
A.-5 B. C.0 D.π
6.对于一组统计数据1,1,6,5,1.下列说法错误的是( )
A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
7.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于( )
A.5 B. C. D.7
8.已知一个多边形的内角和是外角和的3倍,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
9.下列各数是不等式组的解是( )
A.0 B. C.2 D.3
10.按如图所示的方法折纸,下面结论正确的个数( )
①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.
A.1 个 B.2 个 C.1 个 D.4 个
二、填空题(共7小题,每小题3分,满分21分)
11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.
12.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .
13.设、是一元二次方程的两实数根,则的值为 .
14.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________
15.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.
16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.
17.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.
三、解答题(共7小题,满分69分)
18.(10分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
频数
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
请根据所给信息,解答下列问题:m= ,n= ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
19.(5分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
20.(8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:
命中环数
6
7
8
9
10
甲命中相应环数的次数
0
1
3
1
0
乙命中相应环数的次数
2
0
0
2
1
(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;
(2)试通过计算说明甲、乙两人的成绩谁比较稳定?
(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)
21.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
(1)问题发现
①当θ=0°时,= ;
②当θ=180°时,= .
(2)拓展探究
试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
(3)问题解决
①在旋转过程中,BE的最大值为 ;
②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .
22.(10分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.
23.(12分)分式化简:(a-)÷
24.(14分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
S四边形ADCB=
S四边形ADCB=
∴化简得:a2+b2=c2
请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
【详解】
如图,
∵∠ABC=60°,∠2=44°,
∴∠EBC=16°,
∵BE∥CD,
∴∠1=∠EBC=16°,
故选:C.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
2、A
【解析】
根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
【详解】
A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
B.ax=3中当a=0时,方程无解,不符合题意;
C.由可解得不等式组无解,不符合题意;
D.有增根x=1,此方程无解,不符合题意;
故选A.
【点睛】
本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
3、D
【解析】
由题意得+=0,
去分母3x+4(1-x)=0,
解得x=4.故选D.
4、B
【解析】
解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
故选B.
【点睛】
本题考查统计量的选择,掌握中位数的意义是本题的解题关键.
5、D
【解析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
A、﹣5是整数,是有理数,选项错误;
B、是分数,是有理数,选项错误;
C、0是整数,是有理数,选项错误;
D、π是无理数,选项正确.
故选D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
6、D
【解析】
根据中位数、众数、方差等的概念计算即可得解.
【详解】
A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
B、由平均数公式求得这组数据的平均数为4,故此选项正确;
C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
故选D.
考点:1.众数;2.平均数;1.方差;4.中位数.
7、A
【解析】
连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,, 再证明Rt△ABE∽Rt△ADC,得到 ,即2R= = .
【详解】
解:如图,
连接AO并延长到E,连接BE.设AE=2R,则
∠ABE=90°,∠AEB=∠ACB;
∵AD⊥BC于D点,AC=5,DC=3,
∴∠ADC=90°,
∴AD=,
∴
在Rt△ABE与Rt△ADC中,
∠ABE=∠ADC=90°,∠AEB=∠ACB,
∴Rt△ABE∽Rt△ADC,
∴,
即2R= = ;
∴⊙O的直径等于.
故答案选:A.
【点睛】
本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.
8、D
【解析】
根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
【详解】
设多边形的边数是n,则
(n−2)⋅180=3×360,
解得:n=8.
故选D.
【点睛】
此题考查多边形内角与外角,解题关键在于掌握其定理.
9、D
【解析】
求出不等式组的解集,判断即可.
【详解】
,
由①得:x>-1,
由②得:x>2,
则不等式组的解集为x>2,即3是不等式组的解,
故选D.
【点睛】
此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
10、C
【解析】
∵∠1+∠1=∠2,∠1+∠1+∠2=180°,
∴∠1+∠1=∠2=90°,故①正确;
∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;
∵∠1+∠1=90°,∠1+∠BAE=90°,
∴∠1=∠BAE,
又∵∠B=∠C,
∴△ABE∽△ECF.故③,④正确;
故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.
详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.
∵AB∥NP,
∴∠A=∠NPA=60°.
在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,
∴AB=AP•cos∠A=4×cos60°=4×=1海里.
故答案为1.
点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.
12、1.
【解析】
试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.
考点:等腰三角形的性质;三角形三边关系.
13、27
【解析】
试题分析:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.
故答案为27.
点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.
14、2.
【解析】
试题分析:已知方程x2-2x=0有两个相等的实数根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.
考点:一元二次方程根的判别式.
15、﹣4.
【解析】
作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
【详解】
解:作AN⊥x轴于N,如图所示:
∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
∴可设A(x,﹣x)(x<0),
在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
解得:x=﹣2,
∴A(﹣2,2),
代入y=得:k=﹣2×2=﹣4;
故答案为﹣4.
【点睛】
本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
16、1.
【解析】
根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案
【详解】
解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),
设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,
∴抛物线解析式为y=-0.5x1+1,
当水面下降1.5米,通过抛物线在图上的观察可转化为:
当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
可以通过把y=-1.5代入抛物线解析式得出:
-1.5=-0.5x1+1,
解得:x=±3,
1×3-4=1,
所以水面下降1.5m,水面宽度增加1米.
故答案为1.
【点睛】
本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.
17、6.
【解析】
作辅助线,根据反比例函数关系式得:S△AOD=, S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.
【详解】
如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,
∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵点A为函数y=(x>0)的图象上一点,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案为6.
三、解答题(共7小题,满分69分)
18、(1)70,0.2(2)70(3)750
【解析】
(1)根据题意和统计表中的数据可以求得m、n的值;
(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
【详解】
解:(1)由题意可得,
m=200×0.35=70,n=40÷200=0.2,
故答案为70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图,如下图所示;
(3)由题意可得,
该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.
【点睛】
本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
19、 (1) 每次下调10% (2) 第一种方案更优惠.
【解析】
(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.
【详解】
解:(1)设平均每次下调的百分率为x,根据题意得
5000×(1-x)2=4050
解得x=10%或x=1.9(舍去)
答:平均每次下调10%.
(2)9.8折=98%,
100×4050×98%=396900(元)
100×4050-100×1.5×12×2=401400(元),
396900<401400,所以第一种方案更优惠.
答:第一种方案更优惠.
【点睛】
本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.
20、(1)8, 6和9;
(2)甲的成绩比较稳定;(3)变小
【解析】
(1)根据众数、中位数的定义求解即可;
(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;
(3)根据方差公式进行求解即可.
【详解】
解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;
在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;
故答案为8,6和9;
(2)甲的平均数是:(7+8+8+8+9)÷5=8,
则甲的方差是: [(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均数是:(6+6+9+9+10)÷5=8,
则甲的方差是: [2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成绩比较稳定;
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
故答案为变小.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.
21、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
【解析】
(1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
【详解】
解:(1)①当θ=0°时,
在Rt△ABC中,AC=BC=2,
∴∠A=∠B=45°,AB=2,
∵AD=DE=AB=,
∴∠AED=∠A=45°,
∴∠ADE=90°,
∴DE∥CB,
∴,
∴,
∴,
故答案为,
②当θ=180°时,如图1,
∵DE∥BC,
∴,
∴,
即:,
∴,
故答案为;
(2)当0°≤θ<360°时,的大小没有变化,
理由:∵∠CAB=∠DAE,
∴∠CAD=∠BAE,
∵,
∴△ADC∽△AEB,
∴;
(3)①当点E在BA的延长线时,BE最大,
在Rt△ADE中,AE=AD=2,
∴BE最大=AB+AE=2+2;
②如图2,
当点E在BD上时,
∵∠ADE=90°,
∴∠ADB=90°,
在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
∴BE=BD+DE=+,
由(2)知,,
∴CD=+1,
如图3,
当点D在BE的延长线上时,
在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
∴BE=BD﹣DE=﹣,
由(2)知,,
∴CD=﹣1.
故答案为 +1或﹣1.
【点睛】
此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
22、见解析
【解析】
根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一.
【详解】
如图为画出的菱形:
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.
23、a-b
【解析】
利用分式的基本性质化简即可.
【详解】
===.
【点睛】
此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
24、见解析.
【解析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
【详解】
证明:连结BD,过点B作DE边上的高BF,则BF=b-a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
∴ab+b1+ab=ab+c1+a(b-a),
∴a1+b1=c1.
【点睛】
此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
相关试卷
这是一份2024年江苏省常州市武进区前黄初级中学中考二模数学试卷,共6页。
这是一份2023年江苏省常州市武进区前黄实验学校中考数学一模试卷(含答案解析),共28页。试卷主要包含了 −21的绝对值为,5×106B等内容,欢迎下载使用。
这是一份江苏省泰兴市西城初级中学2021-2022学年中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。