终身会员
搜索
    上传资料 赚现金

    2022届吉林省长春市汽开区中考四模数学试题含解析

    立即下载
    加入资料篮
    2022届吉林省长春市汽开区中考四模数学试题含解析第1页
    2022届吉林省长春市汽开区中考四模数学试题含解析第2页
    2022届吉林省长春市汽开区中考四模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届吉林省长春市汽开区中考四模数学试题含解析

    展开

    这是一份2022届吉林省长春市汽开区中考四模数学试题含解析,共19页。试卷主要包含了函数y=自变量x的取值范围是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )

    A.x<-2或x>2 B.x<-2或0<x<2
    C.-2<x<0或0<x<2 D.-2<x<0或x>2
    2.不等式组的解集是 (  )
    A.x>-1 B.x>3
    C.-1<x<3 D.x<3
    3.△ABC在网络中的位置如图所示,则cos∠ACB的值为(  )

    A. B. C. D.
    4.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为(  )

    A.5 B.4 C.7 D.5
    5.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(    )
    A.15                               B.12                               C.9                        D.6
    6.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为(  )

    A. B. C. D.
    7.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )

    A. B. C.1 D.
    8.函数y=自变量x的取值范围是( )
    A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3
    9.如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )
    甲:①作的角平分线;②以为圆心,长为半径画弧,交于点,点即为所求;
    乙:①过点作平行于的直线;②过点作平行于的直线,交于点,点即为所求.

    A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确
    10.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于( )

    A.5 B. C. D.7
    二、填空题(共7小题,每小题3分,满分21分)
    11.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为__.
    12.计算:(+)=_____.
    13.如果不等式组的解集是x<2,那么m的取值范围是_____
    14.化简:______.
    15.已知点A,B的坐标分别为(﹣2,3)、(1,﹣2),将线段AB平移,得到线段A′B′,其中点A与点A′对应,点B与点B′对应,若点A′的坐标为(2,﹣3),则点B′的坐标为________.
    16.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .

    17.若am=2,an=3,则am + 2n =______.
    三、解答题(共7小题,满分69分)
    18.(10分)计算:﹣(﹣2)2+|﹣3|﹣20180×
    19.(5分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?

    20.(8分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.
    21.(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

    这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
    将条形统计图补充完整;
    该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.
    22.(10分)解不等式组,并写出该不等式组的最大整数解.
    23.(12分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
    根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
    24.(14分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
    【详解】
    解:∵反比例函数与正比例函数的图象均关于原点对称,
    ∴A、B两点关于原点对称,
    ∵点A的横坐标为1,∴点B的横坐标为-1,
    ∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
    ∴当y1>y1时,x的取值范围是-1<x<0或x>1.
    故选:D.
    【点睛】
    本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
    2、B
    【解析】
    根据解不等式组的方法可以求得原不等式组的解集.
    【详解】

    解不等式①,得x>-1,
    解不等式②,得x>1,
    由①②可得,x>1,
    故原不等式组的解集是x>1.
    故选B.
    【点睛】
    本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
    3、B
    【解析】
    作AD⊥BC的延长线于点D,如图所示:

    在Rt△ADC中,BD=AD,则AB=BD.
    cos∠ACB=,
    故选B.
    4、C
    【解析】
    连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.
    【详解】
    解:连接AE,

    ∵AC=3,cos∠CAB=,
    ∴AB=3AC=9,
    由勾股定理得,BC==6,
    ∠ACB=90°,点D为AB的中点,
    ∴CD=AB=,
    S△ABC=×3×6=9,
    ∵点D为AB的中点,
    ∴S△ACD=S△ABC=,
    由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,
    则×CD×AE=9,
    解得,AE=4,
    ∴AF=2,
    由勾股定理得,DF==,
    ∵AF=FE,AD=DB,
    ∴BE=2DF=7,
    故选C.
    【点睛】
    本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    5、A
    【解析】
    根据三角函数的定义直接求解.
    【详解】
    在Rt△ABC中,∠C=90°,AC=9,
    ∵,
    ∴,
    解得AB=1.
    故选A
    6、C
    【解析】
    在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
    在矩形OCED中,由勾股定理得:CE=OD=,
    在Rt△ACE中,由勾股定理得:AE=;故选C.
    点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
    7、C
    【解析】
    作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.
    【详解】
    试题分析:作MH⊥AC于H,如图,

    ∵四边形ABCD为正方形,
    ∴∠MAH=45°,
    ∴△AMH为等腰直角三角形,
    ∴AH=MH=AM=×2=,
    ∵CM平分∠ACB,
    ∴BM=MH=,
    ∴AB=2+,
    ∴AC=AB=(2+)=2+2,
    ∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
    ∵BD⊥AC,
    ∴ON∥MH,
    ∴△CON∽△CHM,
    ∴,即,
    ∴ON=1.
    故选C.
    【点睛】
    本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
    8、B
    【解析】
    由题意得,
    x-1≥0且x-3≠0,
    ∴x≥1且x≠3.
    故选B.
    9、A
    【解析】
    根据题意先画出相应的图形,然后进行推理论证即可得出结论.
    【详解】
    甲的作法如图一:

    ∵为等边三角形,AD是的角平分线




    由甲的作法可知,

    在和中,

    故甲的作法正确;
    乙的作法如图二:



    在和中,

    故乙的作法正确;
    故选:A.
    【点睛】
    本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
    10、A
    【解析】
    连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,, 再证明Rt△ABE∽Rt△ADC,得到 ,即2R= = .
    【详解】
    解:如图,

    连接AO并延长到E,连接BE.设AE=2R,则
    ∠ABE=90°,∠AEB=∠ACB;
    ∵AD⊥BC于D点,AC=5,DC=3,
    ∴∠ADC=90°,
    ∴AD=,

    在Rt△ABE与Rt△ADC中,
    ∠ABE=∠ADC=90°,∠AEB=∠ACB,
    ∴Rt△ABE∽Rt△ADC,
    ∴,
    即2R= = ;
    ∴⊙O的直径等于.
    故答案选:A.
    【点睛】
    本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.
    【详解】
    画树状图得:

    ∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线 图象上的只有(3,2),
    ∴点(a,b)在图象上的概率为.
    【点睛】
    本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.
    12、1.
    【解析】
    去括号后得到答案.
    【详解】
    原式=×+×=2+1=1,故答案为1.
    【点睛】
    本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.
    13、m≥1.
    【解析】
    分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.
    详解:解第一个不等式得,x<1,
    ∵不等式组的解集是x<1,
    ∴m≥1,
    故答案为m≥1.
    点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.
    14、3
    【解析】
    分析:根据算术平方根的概念求解即可.
    详解:因为32=9
    所以=3.
    故答案为3.
    点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
    15、(5,﹣8)
    【解析】
    各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B′的坐标.
    【详解】
    由A(-2,3)的对应点A′的坐标为(2,-13),
    坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,
    ∴点B′的横坐标为1+4=5;纵坐标为-2-6=-8;
    即所求点B′的坐标为(5,-8).
    故答案为(5,-8)
    【点睛】
    此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
    16、y=x-3
    【解析】
    【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.
    【详解】当x=2时,y==3,∴A(2,3),B(2,0),
    ∵y=kx过点 A(2,3),
    ∴3=2k,∴k=,
    ∴y=x,
    ∵直线y=x平移后经过点B,
    ∴设平移后的解析式为y=x+b,
    则有0=3+b,
    解得:b=-3,
    ∴平移后的解析式为:y=x-3,
    故答案为:y=x-3.
    【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.
    17、18
    【解析】
    运用幂的乘方和积的乘方的运算法则求解即可.
    【详解】
    解:∵am=2,an=3,
    ∴a3m+2n=(am)3×(an)2=23×32=1.
    故答案为1.
    【点睛】
    本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键.

    三、解答题(共7小题,满分69分)
    18、﹣1
    【解析】
    根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
    【详解】
    原式=﹣1+3﹣1×3=﹣1.
    【点睛】
    本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
    19、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.
    【解析】
    分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;
    (2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.
    详解:(1)设直线AB的解析式为:y=kx+b,
    代入A(4,4),B(6,2)得:,
    解得:,
    ∴直线AB的解析式为:y=﹣x+8,
    同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,
    ∵工资及其他费作为:0.4×5+1=3万元,
    ∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,
    当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;
    (2)当4≤x≤6时,
    w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,
    ∴当x=6时,w1取最大值是1,
    当6≤x≤8时,
    w2=﹣x2+7x﹣23=﹣(x﹣7)2+,
    当x=7时,w2取最大值是1.5,
    ∴==6,
    即最快在第7个月可还清10万元的无息贷款.
    点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.
    20、 (1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.
    【解析】
    (1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;
    (2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.
    【详解】
    解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台.
    依题意得:,
    解得:x=1.
    检验x=1是原分式方程的解.
    (2)由题意得=20-15=5(天)
    ∴现在比原计划提前5天完成.
    【点睛】
    此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
    21、(1)100,108°;(2)答案见解析;(3)600人.
    【解析】
    (1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.
    【详解】
    解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
    ∴此次共抽查了:20÷20%=100人.
    喜欢用QQ沟通所占比例为:,
    ∴QQ的扇形圆心角的度数为:360°×=108°.
    (2)喜欢用短信的人数为:100×5%=5人
    喜欢用微信的人数为:100-20-5-30-5=40
    补充图形,如图所示:

    (3)喜欢用微信沟通所占百分比为:×100%=40%.
    ∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    22、﹣2,﹣1,0
    【解析】
    分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
    本题解析:

    解不等式①得,x≥−2,
    解不等式②得,x

    相关试卷

    2024年吉林省长春市汽开区中考数学一模试卷:

    这是一份2024年吉林省长春市汽开区中考数学一模试卷,共24页。

    2024年吉林省长春市汽开区初中毕业班摸底考试中考一模数学试题:

    这是一份2024年吉林省长春市汽开区初中毕业班摸底考试中考一模数学试题,共6页。

    2023年吉林省长春市汽开区中考数学一模试卷(含解析):

    这是一份2023年吉林省长春市汽开区中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map