|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届湖南长沙长郡教育集团十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2022届湖南长沙长郡教育集团十校联考最后数学试题含解析01
    2022届湖南长沙长郡教育集团十校联考最后数学试题含解析02
    2022届湖南长沙长郡教育集团十校联考最后数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖南长沙长郡教育集团十校联考最后数学试题含解析

    展开
    这是一份2022届湖南长沙长郡教育集团十校联考最后数学试题含解析,共22页。试卷主要包含了估计﹣1的值为,的倒数是,下列事件是必然事件的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.这个数是( )
    A.整数 B.分数 C.有理数 D.无理数
    2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
    A. B. C. D.
    3.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是(  )

    A.0 B.1 C.2 D.3
    4.估计﹣1的值为(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    5.的倒数是( )
    A. B. C. D.
    6.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是(  )

    A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
    7.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是(  )
    A. B. C. D.
    8.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    9.下列事件是必然事件的是(  )
    A.任意作一个平行四边形其对角线互相垂直
    B.任意作一个矩形其对角线相等
    C.任意作一个三角形其内角和为
    D.任意作一个菱形其对角线相等且互相垂直平分
    10.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.

    12.分解因式:ax2-a=______.
    13.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.

    14.4的平方根是 .
    15.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的是_____.

    16.如图,与中,,,,,AD的长为________.

    17.分解因:=______________________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.
    (1)当时,求△PCQ的面积;
    (2)设⊙O的面积为s,求s与t的函数关系式;
    (3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.

    19.(5分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
    20.(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).

    21.(10分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

    22.(10分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
    (1)求证:CB平分∠ACE;
    (2)若BE=3,CE=4,求O的半径.

    23.(12分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.
    (1)二月份冰箱每台售价为多少元?
    (2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?
    (3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?
    24.(14分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=4,求MC的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    由于圆周率π是一个无限不循环的小数,由此即可求解.
    【详解】
    解:实数π是一个无限不循环的小数.所以是无理数.
    故选D.
    【点睛】
    本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
    2、A
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
    考点:中心对称图形;轴对称图形.
    3、D
    【解析】
    根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
    【详解】
    ∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
    ∴∠A=∠EBA,∠CBE=∠EBA,
    ∴∠A=∠CBE=∠EBA,
    ∵∠C=90°,
    ∴∠A+∠CBE+∠EBA=90°,
    ∴∠A=∠CBE=∠EBA=30°,故①选项正确;
    ∵∠A=∠EBA,∠EDB=90°,
    ∴AD=BD,故②选项正确;
    ∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
    ∴EC=ED(角平分线上的点到角的两边距离相等),
    ∴点E到AB的距离等于CE的长,故③选项正确,
    故正确的有3个.
    故选D.
    【点睛】
    此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
    4、C
    【解析】
    分析:根据被开方数越大算术平方根越大,可得答案.
    详解:∵<<,∴1<<5,∴3<﹣1<1.
    故选C.
    点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<<5是解题的关键,又利用了不等式的性质.
    5、C
    【解析】
    由互为倒数的两数之积为1,即可求解.
    【详解】
    ∵,∴的倒数是.
    故选C
    6、D
    【解析】
    根据平行线的性质以及角平分线的定义,即可得到正确的结论.
    【详解】
    解:

    ,故A选项正确;





    故B选项正确;
    平分


    ,故C选项正确;

    ,故选项错误;
    故选.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
    7、A
    【解析】
    根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.
    【详解】
    选项A,是轴对称图形,不是中心对称图形,故可以选;
    选项B,是轴对称图形,也是中心对称图形,故不可以选;
    选项C,不是轴对称图形,是中心对称图形,故不可以选;
    选项D,是轴对称图形,也是中心对称图形,故不可以选.
    故选A
    【点睛】
    本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
    错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.

    8、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    9、B
    【解析】
    必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
    【详解】
    解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
    B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
    C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
    D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
    故选:B.
    【点睛】
    解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
    10、A
    【解析】
    从正面看第一层是三个小正方形,第二层左边一个小正方形,
    故选:A.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形,则∠AEF=45°.
    【详解】
    解:连接AF,

    ∵E是CD的中点,
    ∴CE=,AB=2,
    ∵FC=2BF,AD=3,
    ∴BF=1,CF=2,
    ∴BF=CE,FC=AB,
    ∵∠B=∠C=90°,
    ∴△ABF≌△FCE,
    ∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,
    ∴∠AFE=90°,
    ∴△AFE是等腰直角三角形,
    ∴∠AEF=45°,
    ∴tan∠AEF=1.
    故答案为:1.
    【点睛】
    本题结合三角形全等考查了三角函数的知识.
    12、
    【解析】
    先提公因式,再套用平方差公式.
    【详解】
    ax2-a=a(x2-1)=
    故答案为:
    【点睛】
    掌握因式分解的一般方法:提公因式法,公式法.
    13、 (4,2),
    【解析】
    由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
    【详解】
    解:点、、在直线上,的横坐标是1,

    点,,在直线上,
    ,,
    ,,
    第1个正方形的面积为:;

    ,,,
    第2个正方形的面积为:;

    ,,
    第3个正方形的面积为:;

    第n个正方形的面积为:.
    故答案为,.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
    14、±1.
    【解析】
    试题分析:∵,∴4的平方根是±1.故答案为±1.
    考点:平方根.
    15、①②③
    【解析】
    根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
    【详解】
    ①正确.
    理由:
    ∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,
    ∴Rt△ABG≌Rt△AFG(HL);
    ②正确.
    理由:
    EF=DE=CD=2,设BG=FG=x,则CG=6-x.
    在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,
    解得x=1.
    ∴BG=1=6-1=GC;
    ③正确.
    理由:
    ∵CG=BG,BG=GF,
    ∴CG=GF,
    ∴△FGC是等腰三角形,∠GFC=∠GCF.
    又∵Rt△ABG≌Rt△AFG;
    ∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
    ∴∠AGB=∠AGF=∠GFC=∠GCF,
    ∴AG∥CF;

    ④错误.
    理由:
    ∵S△GCE=GC•CE=×1×4=6
    ∵GF=1,EF=2,△GFC和△FCE等高,
    ∴S△GFC:S△FCE=1:2,
    ∴S△GFC=×6=≠1.
    故④不正确.

    ∴正确的个数有1个: ①②③.
    故答案为①②③
    【点睛】
    本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.
    16、
    【解析】
    先证明△ABC∽△ADB,然后根据相似三角形的判定与性质列式求解即可.
    【详解】
    ∵,,
    ∴△ABC∽△ADB,
    ∴,
    ∵,,
    ∴,
    ∴AD=.
    故答案为:.
    【点睛】
    本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.
    17、 (x-2y)(x-2y+1)
    【解析】
    根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.
    【详解】

    =x2-4xy+4y2-2y+x
    =(x-2y)2+x-2y
    =(x-2y)(x-2y+1)

    三、解答题(共7小题,满分69分)
    18、(1);(2)①;②;(3)t的值为或1或.
    【解析】
    (1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
    (2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
    (3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
    【详解】
    (1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
    CP=t=,
    ∵∠ACB=90°,
    ∴S△PCQ=CQ•PC=×2×=;
    (2)分两种情况:
    ①当Q在边AC上运动时,0<t≤2,如图1,
    由题意得:CQ=4t,CP=t,
    由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
    ∴S=π=;
    ②当Q在边AB上运动时,2<t<4如图2,
    设⊙O与AB的另一个交点为D,连接PD,
    ∵CP=t,AC+AQ=4t,
    ∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
    ∵PQ为⊙O的直径,
    ∴∠PDQ=90°,
    Rt△ACB中,AC=2cm,AB=4cm,
    ∴∠B=30°,
    Rt△PDB中,PD=PB=,
    ∴BD=,
    ∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
    ∴PQ==,
    ∴S=π==;
    (3)分三种情况:
    ①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
    ∴OE⊥AC,
    ∵AQ=4t﹣2,
    Rt△AFQ中,∠AQF=30°,
    ∴AF=2t﹣1,
    ∴FQ=(2t﹣1),
    ∵FQ∥OE∥PC,OQ=OP,
    ∴EF=CE,
    ∴FQ+PC=2OE=PQ,
    ∴(2t﹣1)+t=,
    解得:t=或﹣(舍);
    ②当⊙O与BC相切时,如图4,
    此时PQ⊥BC,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=1;
    ③当⊙O与BA相切时,如图5,
    此时PQ⊥BA,
    ∵BQ=6﹣4t,PB=2﹣t,
    ∴cos30°=,
    ∴,
    ∴t=,
    综上所述,t的值为或1或.

    【点睛】
    本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.
    19、﹣2
    【解析】
    【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.
    【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1
    =x1+2xy+2y1﹣2y1+x1﹣1x1
    =2xy,
    当x=+1,y=﹣1时,
    原式=2×(+1)×(﹣1)
    =2×(3﹣2)
    =﹣2.
    【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.
    20、CD的长度为17﹣17cm.
    【解析】
    在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.
    【详解】
    解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,
    ∴∠BCE=30°,tan30°=,
    ∴BE=ECtan30°=51×=17(cm);
    ∴CF=AE=34+BE=(34+17)cm,
    在Rt△AFD中,∠FAD=45°,
    ∴∠FDA=45°,
    ∴DF=AF=EC=51cm,
    则CD=FC﹣FD=34+17﹣51=17﹣17,
    答:CD的长度为17﹣17cm.
    【点睛】
    本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.
    21、操作平台C离地面的高度为7.6m.
    【解析】
    分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.
    详解:作CE⊥BD于F,AF⊥CE于F,如图2,

    易得四边形AHEF为矩形,
    ∴EF=AH=3.4m,∠HAF=90°,
    ∴∠CAF=∠CAH-∠HAF=118°-90°=28°,
    在Rt△ACF中,∵sin∠CAF=,
    ∴CF=9sin28°=9×0.47=4.23,
    ∴CE=CF+EF=4.23+3.4≈7.6(m),
    答:操作平台C离地面的高度为7.6m.
    点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.
    22、(1)证明见解析;(2).
    【解析】
    试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
    (2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
    (1)证明:如图1,连接OB,

    ∵AB是⊙0的切线,
    ∴OB⊥AB,
    ∵CE丄AB,
    ∴OB∥CE,
    ∴∠1=∠3,
    ∵OB=OC,
    ∴∠1=∠2,
    ∴∠2=∠3,
    ∴CB平分∠ACE;
    (2)如图2,连接BD,

    ∵CE丄AB,
    ∴∠E=90°,
    ∴BC===5,
    ∵CD是⊙O的直径,
    ∴∠DBC=90°,
    ∴∠E=∠DBC,
    ∴△DBC∽△CBE,
    ∴,
    ∴BC2=CD•CE,
    ∴CD==,
    ∴OC==,
    ∴⊙O的半径=.
    考点:切线的性质.
    23、(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.
    【解析】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.
    【详解】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,
    根据题意,得: =,
    解得:x=4000,
    经检验,x=4000是原方程的根.
    答:二月份冰箱每台售价为4000元.
    (2)根据题意,得:3500y+4000(20﹣y)≤76000,
    解得:y≥3,
    ∵y≤2且y为整数,
    ∴y=3,9,10,11,2.
    ∴洗衣机的台数为:2,11,10,9,3.
    ∴有五种购货方案.
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,
    根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,
    ∵(2)中的各方案利润相同,
    ∴1﹣a=0,
    ∴a=1.
    答:a的值为1.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.
    24、(1)证明见解析;(2)MC=.
    【解析】
    【分析】(1)连接OC,利用切线的性质证明即可;
    (2)根据相似三角形的判定和性质以及勾股定理解答即可.
    【详解】(1)连接OC,

    ∵CN为⊙O的切线,
    ∴OC⊥CM,∠OCA+∠ACM=90°,
    ∵OM⊥AB,
    ∴∠OAC+∠ODA=90°,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∴∠ACM=∠ODA=∠CDM,
    ∴MD=MC;
    (2)由题意可知AB=5×2=10,AC=4,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴BC==2,
    ∵∠AOD=∠ACB,∠A=∠A,
    ∴△AOD∽△ACB,
    ∴,即,
    可得:OD=2.5,
    设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,
    解得:x=,
    即MC=.
    【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.

    相关试卷

    湖南长沙长郡教育集团联考2024年八年级下学期期中数学试题+答案: 这是一份湖南长沙长郡教育集团联考2024年八年级下学期期中数学试题+答案,共10页。

    湖南长沙长郡教育集团2022年中考考前最后一卷数学试卷含解析: 这是一份湖南长沙长郡教育集团2022年中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    河北省石家庄28教育集团2022年十校联考最后数学试题含解析: 这是一份河北省石家庄28教育集团2022年十校联考最后数学试题含解析,共19页。试卷主要包含了不等式组的解在数轴上表示为,下列4个数等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map