终身会员
搜索
    上传资料 赚现金

    2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析

    立即下载
    加入资料篮
    2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析第1页
    2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析第2页
    2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析

    展开

    这是一份2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,学校小组名同学的身高等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算结果是无理数的是(  )
    A.3× B. C. D.
    2.分式的值为0,则x的取值为( )
    A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1
    3.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
    A. B.
    C. D.
    4.若,代数式的值是  
    A.0 B. C.2 D.
    5.已知是二元一次方程组的解,则的算术平方根为( )
    A.±2 B. C.2 D.4
    6.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
    A. B. C. D.
    7.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是(  )
    A. B. C. D.
    8.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=(  )

    A.15° B.30° C.45° D.60°
    9.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )
    A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3
    10.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为(  )

    A.π B.π C.π D.π
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.
    12.如图,△ABC三边的中线AD,BE,CF的公共点G,若,则图中阴影部分面积是 .

    13.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
    14.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了______结果保留根号.

    15.若a:b=1:3,b:c=2:5,则a:c=_____.
    16.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)

    三、解答题(共8题,共72分)
    17.(8分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

    (1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
    (2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
    (3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.
    18.(8分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
    19.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.

    (1)求反比例函数和一次函数的解析式;
    (2)请连结,并求出的面积;
    (3)直接写出当时,的解集.
    20.(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)

    21.(8分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
    (Ⅰ)如图①,求∠CED的大小;
    (Ⅱ)如图②,当DE=BE时,求∠C的大小.

    22.(10分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
    (1)求y与x之间的函数关系式;
    (2)直接写出当x>0时,不等式x+b>的解集;
    (3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.

    23.(12分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:
    2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
    24.如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
    (1)求证:四边形DEBF是菱形;
    (2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为   ,并在图上标出此时点P的位置.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    A选项:原式=3×2=6,故A不是无理数;
    B选项:原式=,故B是无理数;
    C选项:原式==6,故C不是无理数;
    D选项:原式==12,故D不是无理数
    故选B.
    【点睛】
    考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    2、A
    【解析】
    分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    ∵原式的值为2,
    ∴,
    ∴(x-2)(x+3)=2,即x=2或x=-3;
    又∵|x|-2≠2,即x≠±2.
    ∴x=-3.
    故选:A.
    【点睛】
    此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.
    3、B
    【解析】
    抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
    【详解】
    解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
    可设新抛物线的解析式为:y=(x-h)1+k,
    代入得:y=(x+1)1-1.
    ∴所得图象的解析式为:y=(x+1)1-1;
    故选:B.
    【点睛】
    本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
    4、D
    【解析】
    由可得,整体代入到原式即可得出答案.
    【详解】
    解:,

    则原式.
    故选:D.
    【点睛】
    本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
    5、C
    【解析】
    二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.
    【分析】∵是二元一次方程组的解,∴,解得.
    ∴.即的算术平方根为1.故选C.
    6、C
    【解析】
    根据中位数的定义进行解答
    【详解】
    将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
    【点睛】
    本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.
    7、B
    【解析】
    画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.
    【详解】
    画树状图如下:

    由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,
    所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,
    故选B.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    8、B
    【解析】
    根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
    【详解】
    解:∵OA=AB,OA=OB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°,
    ∴∠ACB=30°,
    故选B.
    【点睛】
    本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
    9、A
    【解析】
    方程变形后,配方得到结果,即可做出判断.
    【详解】
    方程,
    变形得:,
    配方得:,即
    故选A.
    【点睛】
    本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.
    10、A
    【解析】
    利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧的长.
    【详解】
    解:∵PA切⊙O于点A,
    ∴OA⊥PA,
    ∴∠OAP=90°,
    ∵∠C=∠O,∠P=∠C,
    ∴∠O=2∠P,
    而∠O+∠P=90°,
    ∴∠O=60°,
    ∴劣弧AB的长=.
    故选:A.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、 (-5,4)
    【解析】
    试题解析:由于图形平移过程中,对应点的平移规律相同,
    由点A到点A'可知,点的横坐标减6,纵坐标加3,
    故点B'的坐标为 即
    故答案为:
    12、4
    【解析】
    试题分析:由中线性质,可得AG=2GD,则,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.
    考点:中线的性质.
    13、1
    【解析】
    试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
    ∵正多边形的一个内角是140°,
    ∴它的外角是:180°-140°=40°,
    360°÷40°=1.
    故答案为1.
    考点:多边形内角与外角.
    14、
    【解析】
    根据题意画出图形,进而利用锐角三角函数关系得出答案.
    【详解】
    解:如图1所示:
    过点A作于点D,
    由题意可得:,
    则是等边三角形,
    故BC,
    则,

    如图2所示:
    过点A作于点E,
    由题意可得:,
    则是等腰直角三角形,,
    则,
    故梯子顶端离地面的高度AD下降了
    故答案为:.
    【点睛】
    此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.
    15、2∶1
    【解析】
    分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.
    详解:a:b=1:3=(1×2):(3×2)=2:6;
    b:c=2:5=(2×3):(5×3)=6:1;,
    所以a:c=2:1;
    故答案为2:1.
    点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.
    16、
    【解析】
    过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长.
    【详解】
    如图,作,,垂足分别为点E,F,则四边形是矩形.
    由题意得,米,米,,斜坡的坡度为1∶2,
    在中,∵,
    ∴米.
    在Rt△DCF中,∵斜坡的坡度为1∶2,
    ∴,
    ∴米,
    ∴(米).
    ∴坝底的长度等于米.

    故答案为.
    【点睛】
    此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.

    三、解答题(共8题,共72分)
    17、(1)50(2)420(3)P=
    【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;
    (2)由题意可求得130~145分所占比例,进而求出答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);
    则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);
    如图:

    (2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),
    答:考试成绩评为“B”的学生大约有448名;
    (3)画树状图得:

    ∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,
    ∴所选两名学生刚好是一名女生和一名男生的概率为: =.
    考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识
    视频
    18、1
    【解析】
    本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
    【详解】
    解:原式=2﹣+2×﹣3+1
    =1.
    【点睛】
    本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
    19、(1),;(2)4;(3).
    【解析】
    (1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
    (2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
    (3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
    【详解】
    解:(1)如图,连接,,
    ∵⊙C与轴,轴相切于点D,,且半径为,
    ,,
    ∴四边形是正方形,

    ,点,
    把点代入反比例函数中,
    解得:,
    ∴反比例函数解析式为:,
    ∵点在反比例函数上,
    把代入中,可得,

    把点和分别代入一次函数中,
    得出:,
    解得:,
    ∴一次函数的表达式为:;
    (2)如图,连接,
    ,点的横坐标为,
    的面积为:;
    (3)由,根据图象可知:当时,的解集为:.

    【点睛】
    本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
    20、 (1) ;(2)此校车在AB路段超速,理由见解析.
    【解析】
    (1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.
    【详解】
    解:(1)由题意得,在Rt△ADC中,tan30°==,
    解得AD=24.
    在 Rt△BDC 中,tan60°==,
    解得BD=8
    所以AB=AD﹣BD=24﹣8=16(米).
    (2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),
    因为18.1(米/秒)=65.2千米/时>45千米/时,
    所以此校车在AB路段超速.
    【点睛】
    考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.
    21、(Ⅰ)68°(Ⅱ)56°
    【解析】
    (1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
    【详解】
    (Ⅰ)∵四边形ABED 圆内接四边形,
    ∴∠A+∠DEB=180°,
    ∵∠CED+∠DEB=180°,
    ∴∠CED=∠A,
    ∵∠A=68°,
    ∴∠CED=68°.
    (Ⅱ)连接AE.
    ∵DE=BD,
    ∴,
    ∴∠DAE=∠EAB=∠CAB=34°,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∴∠AEC=90°,
    ∴∠C=90°﹣∠DAE=90°﹣34°=56°

    【点睛】
    本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
    22、(1);(2)x>1;(3)P(﹣,0)或(,0)
    【解析】
    分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
    (2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
    (3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
    详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
    ∴A(1,3),
    把A(1,3)代入双曲线y=,可得k=1×3=3,
    ∴y与x之间的函数关系式为:y=;
    (2)∵A(1,3),
    ∴当x>0时,不等式x+b>的解集为:x>1;
    (3)y1=﹣x+4,令y=0,则x=4,
    ∴点B的坐标为(4,0),
    把A(1,3)代入y2=x+b,可得3=+b,
    ∴b=,
    ∴y2=x+,
    令y2=0,则x=﹣3,即C(﹣3,0),
    ∴BC=7,
    ∵AP把△ABC的面积分成1:3两部分,
    ∴CP=BC=,或BP=BC=
    ∴OP=3﹣=,或OP=4﹣=,
    ∴P(﹣,0)或(,0).
    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    23、(1)50,108°,补图见解析;(2)9.6;(3).
    【解析】
    (1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;
    (2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;
    (3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.
    【详解】
    解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),
    A景点所对应的圆心角的度数是:30%×360°=108°,
    B景点接待游客数为:50×24%=12(万人),
    补全条形统计图如下:

    (2)∵E景点接待游客数所占的百分比为:×100%=12%,
    ∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);
    (3)画树状图可得:

    ∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
    ∴同时选择去同一个景点的概率=.
    【点睛】
    本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.
    24、(1)详见解析;(2).
    【解析】
    (1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;
    (2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.
    【详解】
    (1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.
    ∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.
    同理,BF=DF.
    ∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;
    (2)连接BF.
    ∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.
    ∵M是BF的中点,∴EM⊥BF.
    则EM=BE•sin60°=4×=2.
    即PF+PM的最小值是2.
    故答案为:2.

    【点睛】
    本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.

    相关试卷

    湖南省长沙市西雅中学2022年中考联考数学试题含解析:

    这是一份湖南省长沙市西雅中学2022年中考联考数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,的值是,有下列四个命题等内容,欢迎下载使用。

    湖南省长沙市明德华兴中学2021-2022学年中考数学考前最后一卷含解析:

    这是一份湖南省长沙市明德华兴中学2021-2022学年中考数学考前最后一卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。

    2022年湖南省中考数学考前最后一卷含解析:

    这是一份2022年湖南省中考数学考前最后一卷含解析,共22页。试卷主要包含了方程x2﹣3x+2=0的解是,计算的结果为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map