年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届哈尔滨香坊区中考数学考前最后一卷含解析

    2022届哈尔滨香坊区中考数学考前最后一卷含解析第1页
    2022届哈尔滨香坊区中考数学考前最后一卷含解析第2页
    2022届哈尔滨香坊区中考数学考前最后一卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届哈尔滨香坊区中考数学考前最后一卷含解析

    展开

    这是一份2022届哈尔滨香坊区中考数学考前最后一卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算的值,﹣的绝对值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为(  )
    A.1 B.2 C.3 D.4
    2.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是  
    已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
    求证:∽.
    证明:又,,,,∽.

    A. B. C. D.
    3.-3的相反数是(  )
    A. B.3 C. D.-3
    4.计算的值( )
    A.1 B. C.3 D.
    5.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
    A.-6 B.-5 C.-6或-5 D.6或5
    6.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )

    A.70° B.65° C.60° D.55°
    7.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )

    A. B.π C. D.3
    8.﹣的绝对值是(  )
    A.﹣ B. C.﹣2 D.2
    9.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )

    A. B. C. D.
    10.下列各式中,不是多项式2x2﹣4x+2的因式的是(  )
    A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
    11.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )

    A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
    12.下列运算正确的是(  )
    A.a2•a3=a6 B.a3+a2=a5 C.(a2)4=a8 D.a3﹣a2=a
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.对于一切不小于2的自然数n,关于x的一元二次方程x2﹣(n+2)x﹣2n2=0的两个根记作an,bn(n≥2),则______
    14.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.

    15.如图AB是直径,C、D、E为圆周上的点,则______.

    16.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_____.
    17.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.

    18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
    (1)求A,B两点间的距离(结果精确到0.1km).
    (2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)

    20.(6分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
    (1)求证:∠BDP=90°.
    (2)若m=4,求BE的长.
    (3)在点P的整个运动过程中.
    ①当AF=3CF时,求出所有符合条件的m的值.
    ②当tan∠DBE=时,直接写出△CDP与△BDP面积比.

    21.(6分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.

    22.(8分)解分式方程: -1=
    23.(8分)已知:关于x的方程x2﹣(2m+1)x+2m=0
    (1)求证:方程一定有两个实数根;
    (2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
    24.(10分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场
    决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2
    件.设每件商品降价x元. 据此规律,请回答:
    (1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x的代数式表示);
    (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
    25.(10分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.

    26.(12分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
    (I)如图①,若BC为⊙O的直径,求BD、CD的长;
    (II)如图②,若∠CAB=60°,求BD、BC的长.

    27.(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    先由平均数是3可得x的值,再结合方差公式计算.
    【详解】
    ∵数据1、2、3、x、5的平均数是3,
    ∴=3,
    解得:x=4,
    则数据为1、2、3、4、5,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
    故选B.
    【点睛】
    本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.
    2、B
    【解析】
    根据平行线的性质可得到两组对应角相等,易得解题步骤;
    【详解】
    证明:,

    又,

    ∽.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质;关键是证明三角形相似.
    3、B
    【解析】
    根据相反数的定义与方法解答.
    【详解】
    解:-3的相反数为.
    故选:B.
    【点睛】
    本题考查相反数的定义与求法,熟练掌握方法是关键.
    4、A
    【解析】
    根据有理数的加法法则进行计算即可.
    【详解】

    故选:A.
    【点睛】
    本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
    5、A
    【解析】
    试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
    ∴x1+x2=2,x1∙x2=-1
    ∴=.
    故选A.
    6、B
    【解析】
    根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
    【详解】
    ∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
    ∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
    ∴∠AA′C=45°,
    ∵∠1=20°,
    ∴∠B′A′C=45°-20°=25°,
    ∴∠A′B′C=90°-25°=65°,
    ∴∠B=65°.
    故选B.
    【点睛】
    本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
    7、B
    【解析】
    ∵四边形AECD是平行四边形,
    ∴AE=CD,
    ∵AB=BE=CD=3,
    ∴AB=BE=AE,
    ∴△ABE是等边三角形,
    ∴∠B=60°,
    ∴的弧长=.
    故选B.
    8、B
    【解析】
    根据求绝对值的法则,直接计算即可解答.
    【详解】

    故选:B.
    【点睛】
    本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
    9、B
    【解析】
    根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
    【详解】
    解:主视图,如图所示:

    故选B.
    【点睛】
    本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.
    10、D
    【解析】
    原式分解因式,判断即可.
    【详解】
    原式=2(x2﹣2x+1)=2(x﹣1)2。
    故选:D.
    【点睛】
    考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    11、C
    【解析】
    分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
    详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
    点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    12、C
    【解析】
    根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.
    【详解】
    A、a2•a3=a5,故原题计算错误;
    B、a3和a2不是同类项,不能合并,故原题计算错误;
    C、(a2)4=a8,故原题计算正确;
    D、a3和a2不是同类项,不能合并,故原题计算错误;
    故选:C.
    【点睛】
    此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣.
    【解析】
    试题分析:由根与系数的关系得:,
    则, 则,
    ∴原式=.
    点睛:本题主要考查的就是一元二次方程的韦达定理以及规律的整理,属于中等题型.解决这个问题的关键就是要想到使用韦达定理,然后根据计算的法则得出规律,从而达到简便计算的目的.
    14、1
    【解析】
    试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.
    考点:三角形的外角性质;三角形内角和定理.
    15、90°
    【解析】
    连接OE,根据圆周角定理即可求出答案.
    【详解】
    解:连接OE,

    根据圆周角定理可知:
    ∠C=∠AOE,∠D=∠BOE,
    则∠C+∠D=(∠AOE+∠BOE)=90°,
    故答案为:90°.
    【点睛】
    本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    16、
    【解析】
    试题解析:根据题意得,这一组数的第个数为:
    故答案为
    点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.
    17、1 .
    【解析】
    由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠BAD=∠B=∠BCD=90°,
    由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
    ∵∠DAF=18°,
    ∴∠BAE=∠FAE=×(90°﹣18°)=1°,
    ∴∠AEF=∠AEB=90°﹣1°=54°,
    ∴∠CEF=180°﹣2×54°=72°,
    ∵E为BC的中点,
    ∴BE=CE,
    ∴FE=CE,
    ∴∠ECF=×(180°﹣72°)=54°,
    ∴∠DCF=90°﹣∠ECF=1°.
    故答案为1.
    【点睛】
    本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.
    18、(2n﹣1,2n﹣1).
    【解析】
    解:∵y=x-1与x轴交于点A1,
    ∴A1点坐标(1,0),
    ∵四边形A1B1C1O是正方形,
    ∴B1坐标(1,1),
    ∵C1A2∥x轴,
    ∴A2坐标(2,1),
    ∵四边形A2B2C2C1是正方形,
    ∴B2坐标(2,3),
    ∵C2A3∥x轴,
    ∴A3坐标(4,3),
    ∵四边形A3B3C3C2是正方形,
    ∴B3(4,7),
    ∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
    ∴Bn坐标(2n-1,2n-1).
    故答案为(2n-1,2n-1).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)1.7km;(2)8.9km;
    【解析】
    (1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
    【详解】
    解:(1)由题意可得,
    ∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
    ∴AO=OC•tan34°,BO=OC•tan45°,
    ∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
    即A,B两点间的距离是1.7km;
    (2)由已知可得,
    ∠DOC=90°,OC=5km,∠DCO=56°,
    ∴cos∠DCO=

    ∵sin34°=cos56°,

    解得,CD≈8.9
    答:此时雷达站C和运载火箭D两点间的距离是8.9km.
    【点睛】
    本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.
    20、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.
    【解析】
    由知,再由知、,据此可得,证≌即可得;
    易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
    分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.
    【详解】
    如图1,




    、,


    ≌,

    ,,



    四边形ABEF是矩形,
    设,则,




    ≌,

    ≌,

    在中,,即,
    解得:,
    的长为1.
    如图1,当点C在AF的左侧时,
    ,则,

    ,,
    在中,由可得,
    解得:负值舍去;
    如图2,当点C在AF的右侧时,




    ,,
    在中,由可得,
    解得:负值舍去;
    综上,m的值为或;
    如图3,过点D作于点G,延长GD交BE于点H,

    ≌,

    又,且,

    当点D在矩形ABEF的内部时,
    由可设、,
    则,

    则;
    如图4,当点D在矩形ABEF的外部时,

    由可设、,
    则,

    则,
    综上,与面积比为或.
    【点睛】
    本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.
    21、见解析
    【解析】
    先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
    【详解】

    证明:如图,连接AC.
    ∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
    ∴∠EAC=∠FCA.
    ∵AE=CF,AC=CA, ∴△EAC≌△FCA,
    ∴∠ECA=∠FAC, ∴GA=GC,
    ∴点G在AC的中垂线上,
    ∴点G在BD上.
    【点睛】
    此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.
    22、7
    【解析】
    根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.
    【详解】
    -1=
    3-(x-3)=-1
    3-x+3=-1
    x=7
    【点睛】
    此题主要考查分式方程的求解,解题的关键是正确去掉分母.
    23、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    【解析】
    试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
    (2)先讨论x1,x2的正负,再根据根与系数的关系求解.
    试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
    ∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
    故方程一定有两个实数根;
    (2)①当x1≥0,x2≥0时,即x1=x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    ②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
    ∴x1+x2=2m+1=0,
    解得:m=﹣;
    ③当x1≤0,x2≤0时,即﹣x1=﹣x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    24、(1) 2x 50-x
    (2)每件商品降价20元,商场日盈利可达2100元.
    【解析】
    (1) 2x 50-x.
    (2)解:由题意,得(30+2x)(50-x)=2 100
    解之得x1=15,x2=20.
    ∵该商场为尽快减少库存,降价越多越吸引顾客.
    ∴x=20.
    答:每件商品降价20元,商场日盈利可达2 100元.
    25、(1)CD=BE,理由见解析;(1)证明见解析.
    【解析】
    (1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
    (1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
    【详解】
    解:(1)CD=BE,理由如下:
    ∵△ABC和△ADE为等腰三角形,
    ∴AB=AC,AD=AE,
    ∵∠EAD=∠BAC,
    ∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
    即∠EAB=∠CAD,
    在△EAB与△CAD中,
    ∴△EAB≌△CAD,
    ∴BE=CD;
    (1)∵∠BAC=90°,
    ∴△ABC和△ADE都是等腰直角三角形,
    ∴∠ABF=∠C=45°,
    ∵△EAB≌△CAD,
    ∴∠EBA=∠C,
    ∴∠EBA=45°,
    ∴∠EBF=90°,
    在Rt△BFE中,BF1+BE1=EF1,
    ∵AF平分DE,AE=AD,
    ∴AF垂直平分DE,
    ∴EF=FD,
    由(1)可知,BE=CD,
    ∴BF1+CD1=FD1.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
    26、(1)BD=CD=5;(2)BD=5,BC=5.
    【解析】
    (1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;
    (2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.
    【详解】
    (1)∵BC是⊙O的直径,
    ∴∠CAB=∠BDC=90°.
    ∵AD平分∠CAB,
    ∴,
    ∴CD=BD.
    在直角△BDC中,BC=10,CD2+BD2=BC2,
    ∴BD=CD=5,
    (2)如图②,连接OB,OD,OC,

    ∵AD平分∠CAB,且∠CAB=60°,
    ∴∠DAB=∠CAB=30°,
    ∴∠DOB=2∠DAB=60°.
    又∵OB=OD,
    ∴△OBD是等边三角形,
    ∴BD=OB=OD.
    ∵⊙O的直径为10,则OB=5,
    ∴BD=5,
    ∵AD平分∠CAB,
    ∴,
    ∴OD⊥BC,设垂足为E,
    ∴BE=EC=OB•sin60°=,
    ∴BC=5.
    【点睛】
    本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    27、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
    【解析】
    (1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
    (2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
    【详解】
    (1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
    又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
    ∵x﹣2≥0,∴x≥2.
    又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
    (2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
    ∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
    【点睛】
    本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.

    相关试卷

    2022年林芝中考考前最后一卷数学试卷含解析:

    这是一份2022年林芝中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。

    2022年湖南省中考数学考前最后一卷含解析:

    这是一份2022年湖南省中考数学考前最后一卷含解析,共22页。试卷主要包含了方程x2﹣3x+2=0的解是,计算的结果为等内容,欢迎下载使用。

    2022年阿拉善市中考数学考前最后一卷含解析:

    这是一份2022年阿拉善市中考数学考前最后一卷含解析,共24页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map