终身会员
搜索
    上传资料 赚现金

    2022届福建省石狮市中考猜题数学试卷含解析

    立即下载
    加入资料篮
    2022届福建省石狮市中考猜题数学试卷含解析第1页
    2022届福建省石狮市中考猜题数学试卷含解析第2页
    2022届福建省石狮市中考猜题数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省石狮市中考猜题数学试卷含解析

    展开

    这是一份2022届福建省石狮市中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-4的相反数是,下列说法错误的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
    确的是(  )
    A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1
    2.在函数y=中,自变量x的取值范围是(  )
    A.x≥0 B.x≤0 C.x=0 D.任意实数
    3.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )

    A. B.
    C. D.
    4.若x是2的相反数,|y|=3,则的值是(  )
    A.﹣2 B.4 C.2或﹣4 D.﹣2或4
    5.△ABC在正方形网格中的位置如图所示,则cosB的值为( )

    A. B. C. D.2
    6.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
    A.能中奖一次 B.能中奖两次
    C.至少能中奖一次 D.中奖次数不能确定
    7.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为( )

    A.(0, 1) B.(1, -1) C.(0, -1) D.(1, 0)
    8.-4的相反数是( )
    A. B. C.4 D.-4
    9.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    10.下列说法错误的是( )
    A.必然事件的概率为1
    B.数据1、2、2、3的平均数是2
    C.数据5、2、﹣3、0的极差是8
    D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖
    二、填空题(共7小题,每小题3分,满分21分)
    11.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.

    12.在△ABC中,点D在边BC上,BD=2CD,,,那么= .
    13.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.
    14.在数轴上与所对应的点相距4个单位长度的点表示的数是______.
    15.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
    16.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.

    17.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,.

    (1)求一次函数和反比例函数的解析式;
    (2)根据图象,直接写出时,的取值范围;
    (3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由.
    19.(5分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.

    20.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.

    21.(10分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
    m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
    22.(10分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)

    23.(12分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
    (1)求证:BC是⊙O的切线;
    (2)⊙O的半径为5,tanA=,求FD的长.

    24.(14分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点.
    求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.
    ①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据的图象上的三点,把三点代入可以得到x1=﹣ ,x1= ,x3=,在根据a的大小即可解题
    【详解】
    解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,
    ∴x1=﹣ ,x1= ,x3= ,
    ∵a<1,
    ∴a﹣1<0,
    ∴x1>x3>x1.
    故选B.
    【点睛】
    此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断
    2、C
    【解析】
    当函数表达式是二次根式时,被开方数为非负数.据此可得.
    【详解】
    解:根据题意知 ,
    解得:x=0,
    故选:C.
    【点睛】
    本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
    3、A
    【解析】
    分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.
    详解:该几何体的左视图是:

    故选A.
    点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.
    4、D
    【解析】
    直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
    【详解】
    解:∵x是1的相反数,|y|=3,
    ∴x=-1,y=±3,
    ∴y-x=4或-1.
    故选D.
    【点睛】
    此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
    5、A
    【解析】
    解:在直角△ABD中,BD=2,AD=4,则AB=,
    则cosB=.
    故选A.

    6、D
    【解析】
    由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
    【详解】
    解:根据随机事件的定义判定,中奖次数不能确定
    故选D.
    【点睛】
    解答此题要明确概率和事件的关系:
    ,为不可能事件;
    为必然事件;
    为随机事件.
    7、B
    【解析】
    试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.
    试题解析:由图形可知,

    对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.
    故旋转中心坐标是P(1,-1)
    故选B.
    考点:坐标与图形变化—旋转.
    8、C
    【解析】
    根据相反数的定义即可求解.
    【详解】
    -4的相反数是4,故选C.
    【点晴】
    此题主要考查相反数,解题的关键是熟知相反数的定义.
    9、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.
    10、D
    【解析】
    试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;
    B.数据1、2、2、3的平均数是=2,本项正确;
    C.这些数据的极差为5﹣(﹣3)=8,故本项正确;
    D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,
    故选D.
    考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件

    二、填空题(共7小题,每小题3分,满分21分)
    11、小林
    【解析】
    观察图形可知,小林的成绩波动比较大,故小林是新手.
    故答案是:小林.
    12、
    【解析】
    首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值.
    【详解】
    ∵,,
    ∴=-=-,
    ∵BD=2CD,
    ∴==,
    ∴=+==.

    故答案为.
    13、1.
    【解析】
    根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.
    【详解】
    ∵a1-b1=8,
    ∴(a+b)(a-b)=8,
    ∵a+b=4,
    ∴a-b=1,
    故答案是:1.
    【点睛】
    考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.
    14、2或﹣1
    【解析】
    解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.
    点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.
    15、1
    【解析】
    由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
    【详解】
    解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
    ∴△=2,
    ∴b2﹣4ac=22﹣4×1×m=2;
    ∴m=1.
    故答案为1.
    【点睛】
    本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
    16、
    【解析】
    分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.
    详解:连结OC,∵△ABC为正三角形,∴∠AOC==120°,
    ∵ , ∴图中阴影部分的面积等于
    ∴S扇形AOC=即S阴影=cm2.故答案为.
    点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出∠AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.
    17、5
    【解析】
    已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.
    【详解】
    ∵△ABC是直角三角形,CD是斜边的中线,
    ∴CD= AB,
    又∵EF是△ABC的中位线,
    ∴AB=2CD=2×5=10,
    ∴EF=×10=5.
    故答案为5.
    【点睛】
    本题主要考查三角形中位线定理, 直角三角形斜边上的中线,熟悉掌握是关键.

    三、解答题(共7小题,满分69分)
    18、(1); ;(2)或;(3)存在,或或或.
    【解析】
    (1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;
    (2)利用图象直接得出结论;
    (3)分、、三种情况讨论,即可得出结论.
    【详解】
    (1)一次函数与反比例函数,相交于点,,
    ∴把代入得:,
    ∴,
    ∴反比例函数解析式为,
    把代入得:,
    ∴,
    ∴点C的坐标为,
    把,代入得:,
    解得:,
    ∴一次函数解析式为;
    (2)根据函数图像可知:
    当或时,一次函数的图象在反比例函数图象的上方,
    ∴当或时,;
    (3)存在或或或时,为等腰三角形,理由如下:
    过作轴,交轴于,

    ∵直线与轴交于点,
    ∴令得,,
    ∴点A的坐标为,
    ∵点B的坐标为,
    ∴点D的坐标为,
    ∴,
    ①当时,则,

    ∴点P的坐标为:、;
    ②当时,
    是等腰三角形,,
    平分,

    ∵点D的坐标为,
    ∴点P的坐标为,即;
    ③当时,如图:

    设,
    则,
    在中,,,,
    由勾股定理得:


    解得:,

    ∴点P的坐标为,即,
    综上所述,当或或或时,为等腰三角形.
    【点睛】
    本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.
    19、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
    【解析】
    (1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
    (2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
    【详解】
    (1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
    ∴﹣a+3=2,b=﹣×4+3,
    ∴a=2,b=1,
    ∴点A的坐标为(2,2),点B的坐标为(4,1),
    又∵点A(2,2)在反比例函数y=的图象上,
    ∴k=2×2=4,
    ∴反比例函数的表达式为y=(x>0);
    (2)延长CA交y轴于点E,延长CB交x轴于点F,

    ∵AC∥x轴,BC∥y轴,
    则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
    ∴四边形OECF为矩形,且CE=4,CF=2,
    ∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
    =2×4﹣×2×2﹣×4×1
    =4,
    设点P的坐标为(0,m),
    则S△OAP=×2•|m|=4,
    ∴m=±4,
    ∴点P的坐标为(0,4)或(0,﹣4).
    【点睛】
    此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
    20、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.

    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
    21、 (1)、26%;50;(2)、公交车;(3)、300名.
    【解析】
    试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.
    试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;
    骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:

    (2)、由图可知,采用乘公交车上学的人数最多
    (3)、该校骑自行车上学的人数约为:1500×20%=300(名).
    答:该校骑自行车上学的学生有300名.
    考点:统计图
    22、不需要改道行驶
    【解析】
    解:过点A作AH⊥CF交CF于点H,由图可知,

    ∵∠ACH=75°-15°=60°,
    ∴.
    ∵AH>100米,
    ∴消防车不需要改道行驶.
    过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.
    23、(1)证明见解析(2)
    【解析】
    (1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;
    (2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.
    【详解】
    (1)∵点G是AE的中点,
    ∴OD⊥AE,
    ∵FC=BC,
    ∴∠CBF=∠CFB,
    ∵∠CFB=∠DFG,
    ∴∠CBF=∠DFG
    ∵OB=OD,
    ∴∠D=∠OBD,
    ∵∠D+∠DFG=90°,
    ∴∠OBD+∠CBF=90°
    即∠ABC=90°
    ∵OB是⊙O的半径,
    ∴BC是⊙O的切线;
    (2)连接AD,

    ∵OA=5,tanA=,
    ∴OG=3,AG=4,
    ∴DG=OD﹣OG=2,
    ∵AB是⊙O的直径,
    ∴∠ADF=90°,
    ∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
    ∴∠DAG=∠FDG,
    ∴△DAG∽△FDG,
    ∴,
    ∴DG2=AG•FG,
    ∴4=4FG,
    ∴FG=1
    ∴由勾股定理可知:FD=.
    【点睛】
    本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.
    24、(1),;(2)① 3,② .
    【解析】
    (1)将代入可求出a,将A点坐标代入可求出k;
    (2)①根据题意画出函数图像,可直接写出区域内的整点个数;
    ②求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.
    【详解】
    解:(1)将代入得a=4
    将代入,得
    (2)①区域内的整点个数是3
    ②∵直线是过点且平行于直线
    ∴直线的表达式为
    当时,即线段PM上有整点


    【点睛】
    本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.

    相关试卷

    福建省石狮市重点中学2022年中考猜题数学试卷含解析:

    这是一份福建省石狮市重点中学2022年中考猜题数学试卷含解析,共20页。试卷主要包含了已知,代数式的值为,如图,能判定EB∥AC的条件是,下列四个多项式,能因式分解的是等内容,欢迎下载使用。

    福建省泉州实验中学2022年中考猜题数学试卷含解析:

    这是一份福建省泉州实验中学2022年中考猜题数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022年福建省厦门市五校中考猜题数学试卷含解析:

    这是一份2022年福建省厦门市五校中考猜题数学试卷含解析,共25页。试卷主要包含了已知抛物线y=ax2+bx+c,下列几何体中三视图完全相同的是,若分式方程无解,则a的值为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map