年终活动
搜索
    上传资料 赚现金

    2022届福建省福州十中学中考数学模拟精编试卷含解析

    立即下载
    加入资料篮
    2022届福建省福州十中学中考数学模拟精编试卷含解析第1页
    2022届福建省福州十中学中考数学模拟精编试卷含解析第2页
    2022届福建省福州十中学中考数学模拟精编试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省福州十中学中考数学模拟精编试卷含解析

    展开

    这是一份2022届福建省福州十中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣1﹣等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )

    A.AE=6cm B.
    C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
    2.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    3.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
    A. B. C. D.
    4.在﹣3,﹣1,0,1四个数中,比﹣2小的数是(  )
    A.﹣3 B.﹣1 C.0 D.1
    5.计算﹣1﹣(﹣4)的结果为(  )
    A.﹣3 B.3 C.﹣5 D.5
    6.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是  

    A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D
    7.如图,是的直径,弦,,,则阴影部分的面积为( )

    A.2π B.π C. D.
    8.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
    A.0 B.1 C.2 D.3
    9.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从
    点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为

    A. B. C. D.
    10.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(  )
    A. B. C. D.
    11.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )
    A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×106
    12.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
    A.-4℃ B.4℃ C.8℃ D.-8℃
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.

    14.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB∥CD,CD⊥BC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.

    15.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.

    16.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.
    17.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.

    18.若关于x的方程有两个不相等的实数根,则实数a的取值范围是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)计算:(﹣2)0++4cos30°﹣|﹣|.
    20.(6分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:

    (1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
    (2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
    21.(6分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,
    (1)求证:BC=2AD;
    (2)若cosB=,AB=10,求CD的长.

    22.(8分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
    (1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
    (2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
    23.(8分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.

    24.(10分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.

    25.(10分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
    (1)直接写出抛物线y=x2的焦点坐标以及直径的长.
    (2)求抛物线y=x2-x+的焦点坐标以及直径的长.
    (3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
    (4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
    ②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.

    26.(12分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
    (1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
    (2)汽车B的速度是多少?
    (3)求L1,L2分别表示的两辆汽车的s与t的关系式.
    (4)2小时后,两车相距多少千米?
    (5)行驶多长时间后,A、B两车相遇?

    27.(12分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
    (1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
    (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    (1)结论A正确,理由如下:
    解析函数图象可知,BC=10cm,ED=4cm,
    故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.
    (2)结论B正确,理由如下:
    如图,连接EC,过点E作EF⊥BC于点F,

    由函数图象可知,BC=BE=10cm,,
    ∴EF=1.∴.
    (3)结论C正确,理由如下:
    如图,过点P作PG⊥BQ于点G,

    ∵BQ=BP=t,∴.
    (4)结论D错误,理由如下:
    当t=12s时,点Q与点C重合,点P运动到ED的中点,
    设为N,如图,连接NB,NC.

    此时AN=1,ND=2,由勾股定理求得:NB=,NC=.
    ∵BC=10,
    ∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
    故选D.
    2、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    3、A
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
    考点:中心对称图形;轴对称图形.
    4、A
    【解析】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
    【详解】
    因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
    所以在-3,-1,0,1这四个数中比-2小的数是-3,
    故选A.
    【点睛】
    本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.
    5、B
    【解析】
    原式利用减法法则变形,计算即可求出值.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
    6、B
    【解析】
    先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.
    【详解】
    解:∵直径CD⊥弦AB,
    ∴弧AD =弧BD,
    ∴∠C=∠BOD.
    故选B.
    【点睛】
    本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    7、D
    【解析】
    分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
    详解:连接OD,
    ∵CD⊥AB,
    ∴ (垂径定理),

    即可得阴影部分的面积等于扇形OBD的面积,
    又∵
    ∴ (圆周角定理),
    ∴OC=2,
    故S扇形OBD=
    即阴影部分的面积为.
    故选D.

    点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
    8、D
    【解析】
    解:如图:

    利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
    故选:D.
    9、B
    【解析】
    分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:
    ∵等边三角形ABC的边长为3,N为AC的三等分点,
    ∴AN=1。∴当点M位于点A处时,x=0,y=1。
    ①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;
    ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。
    故选B。
    10、C
    【解析】
    画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
    【详解】
    解:画树状图得:

    ∵共有12种等可能的结果,两次都摸到白球的有2种情况,
    ∴两次都摸到白球的概率是:.
    故答案为C.
    【点睛】
    本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
    11、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将365000这个数用科学记数法表示为3.65×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、C
    【解析】
    根据题意列出算式,计算即可求出值.
    【详解】
    解:根据题意得:6-(-2)=6+2=8,
    则室内温度比室外温度高8℃,
    故选:C.
    【点睛】
    本题考查了有理数的减法,熟练掌握运算法则是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    画出图形,设菱形的边长为x,根据勾股定理求出周长即可.
    【详解】

    当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
    在Rt△ABC中,
    由勾股定理:x2=(8-x)2+22,
    解得:x=,
    ∴4x=1,
    即菱形的最大周长为1cm.
    故答案是:1.
    【点睛】
    解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.
    14、4或1
    【解析】
    先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
    【详解】
    ①如图:因为AC==2,
    点A是斜边EF的中点,
    所以EF=2AC=4,

    ②如图:
    因为BD==5,
    点D是斜边EF的中点,
    所以EF=2BD=1,

    综上所述,原直角三角形纸片的斜边长是4或1,
    故答案是:4或1.
    【点睛】
    此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.
    15、1:1
    【解析】
    分析:根据相似三角形的周长比等于相似比解答.
    详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.
    点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
    16、
    【解析】
    根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.
    【详解】
    设大和尚x人,小和尚y人,由题意可得

    故答案为.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.
    17、4
    【解析】
    ∵点C是线段AD的中点,若CD=1,
    ∴AD=1×2=2,
    ∵点D是线段AB的中点,
    ∴AB=2×2=4,
    故答案为4.
    18、a>﹣.
    【解析】
    试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.
    考点:根的判别式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、1
    【解析】
    分析:按照实数的运算顺序进行运算即可.
    详解:原式

    =1.
    点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
    20、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
    【解析】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
    【详解】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
    根据题意得:18x+12(20﹣x)=300,
    解得:x=10,
    则20﹣x=20﹣10=10,
    则甲、乙两种型号的产品分别为10万只,10万只;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
    根据题意得:13y+8.8(20﹣y)≤239,
    解得:y≤15,
    根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
    当y=15时,W最大,最大值为91万元.
    所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
    考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
    21、(1)证明见解析;(2)CD=2.
    【解析】
    (1)根据三角函数的概念可知tanA=,cos∠BCD=,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.
    【详解】
    (1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,
    ∴=2·,
    ∴BC=2AD.
    (2)∵cosB==,BC=2AD,
    ∴=.
    ∵AB=10,∴AD=×10=4,BD=10-4=6,
    ∴BC=8,∴CD==2.
    【点睛】
    本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.
    22、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【解析】
    (1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
    (2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
    【详解】
    (1)设购进甲种商品x件,购进乙商品y件,
    根据题意得:

    解得:,
    答:商店购进甲种商品40件,购进乙种商品60件;
    (2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
    根据题意列得:

    解得:20≤a≤22,
    ∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
    ∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
    答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【点睛】
    此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
    23、1.
    【解析】
    试题分析:根据相似三角形的判定与性质,可得答案.
    试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.
    考点:相似三角形的判定与性质.
    24、证明见解析
    【解析】
    首先证明△ABC≌△DEF(ASA),进而得出BC=EF,BC∥EF,进而得出答案.
    【详解】
    ∵AB∥DE,
    ∴∠A=∠D,
    ∵AF=CD,
    ∴AC=DF,
    在△ABC和△DEF中,

    ∴△ABC≌△DEF,
    ∴BC=EF,∠ACB=∠DFE,
    ∴BC∥EF,
    ∴四边形BCEF是平行四边形.
    【点睛】
    本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.
    25、(1)4(1)4(3)(4)①a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
    【解析】
    (1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;
    (1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;
    (3)根据题意和y=a(x-h)1+k(a≠0)的直径为,可以求得a的值;
    (4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;
    ②根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.
    【详解】
    (1)∵抛物线y=x1,
    ∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,
    ∴抛物线y=x1的焦点坐标为(0,1),
    将y=1代入y=x1,得x1=-1,x1=1,
    ∴此抛物线的直径是:1-(-1)=4;
    (1)∵y=x1-x+=(x-3)1+1,
    ∴此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,
    ∴焦点坐标为(3,3),
    将y=3代入y=(x-3)1+1,得
    3=(x-3)1+1,解得,x1=5,x1=1,
    ∴此抛物线的直径时5-1=4;
    (3)∵焦点A(h,k+),
    ∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,
    ∴直径为:h+-(h-)==,
    解得,a=±,
    即a的值是;
    (4)①由(3)得,BC=,
    又CD=A'A=.
    所以,S=BC•CD=•==1.
    解得,a=±;
    ②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
    理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:
    B(1,3),C(5,3),E(1,1),D(5,1),
    当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,
    ∴当m=1-或m=5+时,1个公共点;
    当1-<m≤1或5≤m<5+时,1个公共点.
    由图可知,公共点个数随m的变化关系为
    当m<1-时,无公共点;
    当m=1-时,1个公共点;
    当1-<m≤1时,1个公共点;
    当1<m<5时,3个公共点;
    当5≤m<5+时,1个公共点;
    当m=5+时,1个公共点;
    当m>5+时,无公共点;
    由上可得,当m=1-或m=5+时,1个公共点;
    当1-<m≤1或5≤m<5+时,1个公共点.
    【点睛】
    考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.
    26、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇.
    【解析】
    试题分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;
    (2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;
    (3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;
    (4)结合(3)中函数图象求得时s的值,做差即可求解;
    (5)求出函数图象的交点坐标即可求解.
    试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;
    (2)(330﹣240)÷60=1.5(千米/分);
    (3)设L1为 把点(0,330),(60,240)代入得
    所以
    设L2为 把点(60,60)代入得

    所以
    (4)当时,
    330﹣150﹣120=60(千米);
    所以2小时后,两车相距60千米;
    (5)当时,
    解得
    即行驶132分钟,A、B两车相遇.
    27、 (1);(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
    【详解】
    解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
    故答案为:;
    (2)画树状图为:

    共有6种等可能的结果数,其中乙摸到白球的结果数为2,
    所以乙摸到白球的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.

    相关试卷

    2023年福建省福州市台江区华侨中学中考数学模拟试卷(含解析):

    这是一份2023年福建省福州市台江区华侨中学中考数学模拟试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    福建省厦门五中学2022年中考数学模拟精编试卷含解析:

    这是一份福建省厦门五中学2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了-的立方根是等内容,欢迎下载使用。

    福建省诏安县怀恩中学2022年中考数学模拟精编试卷含解析:

    这是一份福建省诏安县怀恩中学2022年中考数学模拟精编试卷含解析,共23页。试卷主要包含了五个新篮球的质量,下列各式中,正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map