![2021-2022学年山东省郯城县红花镇初级中学中考数学最后冲刺模拟试卷含解析第1页](http://m.enxinlong.com/img-preview/2/3/13314273/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年山东省郯城县红花镇初级中学中考数学最后冲刺模拟试卷含解析第2页](http://m.enxinlong.com/img-preview/2/3/13314273/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年山东省郯城县红花镇初级中学中考数学最后冲刺模拟试卷含解析第3页](http://m.enxinlong.com/img-preview/2/3/13314273/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年山东省郯城县红花镇初级中学中考数学最后冲刺模拟试卷含解析
展开这是一份2021-2022学年山东省郯城县红花镇初级中学中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,将点P,下列命题是真命题的个数有,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若分式有意义,则x的取值范围是( )
A.x>3 B.x<3 C.x≠3 D.x=3
2.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )
A. B. C. D.
3.下列各点中,在二次函数的图象上的是( )
A. B. C. D.
4.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )
A. B. C. D.
5.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是( )
A.0个 B.1个或2个
C.0个、1个或2个 D.只有1个
6.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )
A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)
C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)
7.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A.50° B.60° C.70° D.80°
8.已知二次函数 图象上部分点的坐标对应值列表如下:
x
…
-3
-2
-1
0
1
2
…
y
…
2
-1
-2
-1
2
7
…
则该函数图象的对称轴是( )
A.x=-3 B.x=-2 C.x=-1 D.x=0
9.下列命题是真命题的个数有( )
①菱形的对角线互相垂直;
②平分弦的直径垂直于弦;
③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
A.1个 B.2个 C.3个 D.4个
10.下列图形中,不是轴对称图形的是( )
A. B. C. D.
11.一元二次方程的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
12.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为( )
A.y=x+1 B.y=x-1 C.y=x D.y=x-2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.将绕点逆时针旋转到使、、在同一直线上,若,,,则图中阴影部分面积为________.
14.若+(y﹣2018)2=0,则x﹣2+y0=_____.
15.如图,在菱形纸片中,,,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为________.
16.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.
17.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.
18.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
x
…
﹣3
﹣2
0
1
3
5
…
y
…
7
0
﹣8
﹣9
﹣5
7
…
则二次函数y=ax2+bx+c在x=2时,y=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.
(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;
(2)函数y=+1的图象与x轴、y轴交点的情况是: ;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 .
20.(6分)化简求值:,其中.
21.(6分)先化简,再求值:,且x为满足﹣3<x<2的整数.
22.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.
23.(8分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.
24.(10分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.
25.(10分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.
证明:S矩形ABCD=S1+S2+S3=2,S4= ,S5= ,S6= + ,S阴影=S1+S6=S1+S2+S3= .
26.(12分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲,乙两组工作一天,商店各应付多少钱?
(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
27.(12分)(1)计算: ;
(2)解不等式组 :
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
考点:分式有意义的条件.
2、A
【解析】
∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),
∴当他忘记了末位数字时,要一次能打开的概率是.
故选A.
3、D
【解析】
将各选项的点逐一代入即可判断.
【详解】
解:当x=1时,y=-1,故点不在二次函数的图象;
当x=2时,y=-4,故点和点不在二次函数的图象;
当x=-2时,y=-4,故点在二次函数的图象;
故答案为:D.
【点睛】
本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.
4、A
【解析】
对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.
【详解】
解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.
【点睛】
本题考查了三视图的概念.
5、C
【解析】
根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
【详解】
∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
故选C.
【点睛】
考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
6、A
【解析】
分顺时针旋转,逆时针旋转两种情形求解即可.
【详解】
解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),
故选A.
【点睛】
本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
7、C
【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,
∴OM2+ON2=MN2,
∴∠MON=90°,
∵∠EOM=20°,
∴∠NOF=180°﹣20°﹣90°=70°.
故选C.
【点睛】
本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
8、C
【解析】
由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
【详解】
解:∵x=-2和x=0时,y的值相等,
∴二次函数的对称轴为,
故答案为:C.
【点睛】
本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
9、C
【解析】
根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
【详解】
解:①菱形的对角线互相垂直是真命题;
②平分弦(非直径)的直径垂直于弦,是假命题;
③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
故选C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.
10、A
【解析】
观察四个选项图形,根据轴对称图形的概念即可得出结论.
【详解】
根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.
故选A.
【点睛】
此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
11、D
【解析】
试题分析:△=22-4×4=-12<0,故没有实数根;
故选D.
考点:根的判别式.
12、A
【解析】向左平移一个单位长度后解析式为:y=x+1.
故选A.
点睛:掌握一次函数的平移.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.
详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,
∴BC=1cm,AC=1cm,∠A′BA=110°,∠CBC′=110°,
∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=×(41-11)=4πcm1.
故答案为4π.
点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.
14、1
【解析】
直接利用偶次方的性质以及二次根式的性质分别化简得出答案.
【详解】
解:∵+(y﹣1018)1=0,
∴x﹣1=0,y﹣1018=0,
解得:x=1,y=1018,
则x﹣1+y0=1﹣1+10180=1+1=1.
故答案为:1.
【点睛】
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
15、
【解析】
过点作,交延长线于,连接,交于,根据折叠的性质可得,,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.
【详解】
过点作,交延长线于,连接,交于,
∵四边形是菱形,
∴,
∵将菱形纸片翻折,使点落在的中点处,折痕为,
∴,,
∵,,
∴,
∴,
∵,
∴,
∴,
∵,,
∴,
∴,,
∵为中点,
∴,
∴,
∴,
∴.
故答案为
【点睛】
本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.
16、40
【解析】
如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,
故答案为:40.
17、
【解析】
试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.
考点:概率.
18、﹣1
【解析】
试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
解:∵x=﹣3时,y=7;x=5时,y=7,
∴二次函数图象的对称轴为直线x=1,
∴x=0和x=2时的函数值相等,
∴x=2时,y=﹣1.
故答案为﹣1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1),1;(2)与x轴交于(﹣1,0),与y轴没交点;(3)答案不唯一,如:y=﹣+1.
【解析】
(1)根据函数图象的平移规律,可得答案;
(2)根据自变量与函数值的对应关系,可得答案;
(3)根据点的坐标满足函数解析式,可得答案.
【详解】
(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,
故答案为:,1;
(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,
故答案为:与x轴交于(﹣1,0),与y轴没交点;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=﹣+1, 答案不唯一,
故答案为:y=﹣+1.
【点睛】
本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键.
20、
【解析】
分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
详解:原式
当时,
点睛:考查分式的混合运算,掌握运算顺序是解题的关键.
21、-5
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
由于x≠0且x≠1且x≠﹣2,
所以x=﹣1,
原式=﹣2﹣3=﹣5
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
22、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
23、
【解析】
根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
【详解】
解:∵矩形沿直线AC折叠,点B落在点E处,
∴CE=BC,∠BAC=∠CAE,
∵矩形对边AD=BC,
∴AD=CE,
设AE、CD相交于点F,
在△ADF和△CEF中,
,
∴△ADF≌△CEF(AAS),
∴EF=DF,
∵AB∥CD,
∴∠BAC=∠ACF,
又∵∠BAC=∠CAE,
∴∠ACF=∠CAE,
∴AF=CF,
∴AC∥DE,
∴△ACF∽△DEF,
∴,
设EF=3k,CF=5k,
由勾股定理得CE=,
∴AD=BC=CE=4k,
又∵CD=DF+CF=3k+5k=8k,
∴AB=CD=8k,
∴AD:AB=(4k):(8k)=.
【点睛】
本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.
24、还需要航行的距离的长为20.4海里.
【解析】
分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.
详解:由题知:,,.
在中,,,(海里).
在中,,,(海里).
答:还需要航行的距离的长为20.4海里.
点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.
25、S1,S3,S4,S5,1
【解析】
利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.
【详解】
由题意:S矩形ABCD=S1+S1+S3=1,
S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.
故答案为S1,S3,S4,S5,1.
【点睛】
考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.
26、(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.
【解析】
(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;
(2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;
(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.
【详解】
解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.
由题意得:
解得:
答:甲、乙两组工作一天,商店各应付300元和140元
(2)单独请甲组需要的费用:300×12=3600元.
单独请乙组需要的费用:24×140=3360元.
答:单独请乙组需要的费用少.
(3)请两组同时装修,理由:
甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;
乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;
甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;
因为5120<6000<8160,所以甲乙合作损失费用最少,
答:甲乙合作施工更有利于商店.
【点睛】
考查列二元一次方程组解实际问题的运用,工作总量=工作效率×工作时间的运用,设计推理方案的运用,解答时建立方程组求出甲乙单独完成的工作时间是关键.
27、(1);(2).
【解析】
(1)根据幂的运算与实数的运算性质计算即可.
(2)先整理为最简形式,再解每一个不等式,最后求其解集.
【详解】
(1)解:原式=
=
(2)解不等式①,得 .
解不等式②,得 .
∴ 原不等式组的解集为
【点睛】
本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.
相关试卷
这是一份2023-2024学年山东省郯城县红花镇初级中学九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了有下列四种说法等内容,欢迎下载使用。
这是一份2023-2024学年山东省郯城县红花镇初级中学八年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,因式分解x﹣4x3的最后结果是,分式有意义,则的取值范围是,无论取什么数,总有意义的分式是等内容,欢迎下载使用。
这是一份山东省郯城县红花镇初级中学2022-2023学年数学七下期末联考模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,化简的结果是等内容,欢迎下载使用。