2021-2022学年新疆维吾尔自治区中考联考数学试卷含解析
展开
这是一份2021-2022学年新疆维吾尔自治区中考联考数学试卷含解析,共20页。试卷主要包含了若分式的值为0,则x的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
A. B.
C. D.
2.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
A.140元 B.150元 C.160元 D.200元
3.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )
A.90°-α B.90°+ α C. D.360°-α
4.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )
A.305.5×104 B.3.055×102 C.3.055×1010 D.3.055×1011
5.如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是
A. B.
C. D.
6.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
7.若分式的值为0,则x的值为( )
A.-2 B.0 C.2 D.±2
8.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
9.在下列交通标志中,是中心对称图形的是( )
A. B.
C. D.
10.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为( )
A.2 B.3 C.4 D.6
11.二元一次方程组的解为( )
A. B. C. D.
12.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果关于x的方程的两个实数根分别为x1,x2,那么的值为________________.
14.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.
15.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.
16.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.
17.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.
18.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .
20.(6分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
超市:购物金额打9折后,若超过2000元再优惠300元;
超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
21.(6分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
22.(8分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?
23.(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.
(1)求证:GF=BF;
(2)若EB=1,BC=4,求AG的长;
(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.
24.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
(1)求点C和点A的坐标.
(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.
25.(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中a= ,b= ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
26.(12分)计算:|﹣1|+﹣(1﹣)0﹣()﹣1.
27.(12分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
解:设走路线一时的平均速度为x千米/小时,
故选A.
2、B
【解析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
3、C
【解析】
试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
∵PB和PC分别为∠ABC、∠BCD的平分线,
∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
故选C.
考点:1.多边形内角与外角2.三角形内角和定理.
4、C
【解析】
解:305.5亿=3.055×1.故选C.
5、A
【解析】
依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象.
【详解】
解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,
抛物线向上平移5个单位后可得:,即,
形成的图象是A选项.
故选A.
【点睛】
本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.
6、A
【解析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
故选:A.
【点睛】
本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
7、C
【解析】
由题意可知:,
解得:x=2,
故选C.
8、D
【解析】
试题解析:A、∵4+10+8+6+2=30(人),
∴参加本次植树活动共有30人,结论A正确;
B、∵10>8>6>4>2,
∴每人植树量的众数是4棵,结论B正确;
C、∵共有30个数,第15、16个数为5,
∴每人植树量的中位数是5棵,结论C正确;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植树量的平均数约是4.73棵,结论D不正确.
故选D.
考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
9、C
【解析】
解:A图形不是中心对称图形;
B不是中心对称图形;
C是中心对称图形,也是轴对称图形;
D是轴对称图形;不是中心对称图形
故选C
10、B
【解析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
11、C
【解析】
利用加减消元法解这个二元一次方程组.
【详解】
解:
①-②2,得:y=-2,
将y=-2代入②,得:2x-2=4,
解得,x=3,
所以原方程组的解是.
故选C.
【点睛】
本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.
12、C
【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
共用去:(2a+3b)元.
故选C.
【点睛】
本题主要考查列代数式,总价=单价乘数量.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.
【详解】
∵方程x2+kx+=0有两个实数根,
∴b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)2≥0,
∴k=3,
代入方程得:x2+3x+=(x+)2=0,
解得:x1=x2=-,
则=-.
故答案为-.
【点睛】
此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.
14、y2<y1<y2
【解析】
分析:设t=k2﹣2k+2,配方后可得出t>1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论.
详解:设t=k2﹣2k+2,
∵k2﹣2k+2=(k﹣1)2+2>1,
∴t>1.
∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,
∴y1=﹣,y2=﹣t,y2=t,
又∵﹣t<﹣<t,
∴y2<y1<y2.
故答案为:y2<y1<y2.
点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键.
15、10
【解析】
首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.
【详解】
如图,
由题意可得:∠APE=∠CPE,
∴∠APB=∠CPD,
∵AB⊥BD,CD⊥BD,
∴∠ABP=∠CDP=90°,
∴△ABP∽△CDP,
∴=,
∵AB=2米,BP=3米,PD=15米,
∴=,
解得:CD=10米.
故答案为10.
【点睛】
本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.
16、1:3:5
【解析】
∵DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∵AD=DF=FB,
∴AD:AF:AB=1:2:3,
∴ =1:4:9,
∴SⅠ:SⅡ:SⅢ=1:3:5.
故答案为1:3:5.
点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方.
17、34°
【解析】
分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.
详解:∵直径AB⊥弦CD, ∴∠BOD=2∠A=56°, ∴∠D=90°-56°=34°.
点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.
18、
【解析】
考点:弧长的计算;正多边形和圆.
分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.
解:方法一:
先求出正六边形的每一个内角==120°,
所得到的三条弧的长度之和=3×=2πcm;
方法二:先求出正六边形的每一个外角为60°,
得正六边形的每一个内角120°,
每条弧的度数为120°,
三条弧可拼成一整圆,其三条弧的长度之和为2πcm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
20、(1)这种篮球的标价为每个50元;(2)见解析
【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
【详解】
(1)设这种篮球的标价为每个x元,
依题意,得,
解得:x=50,
经检验:x=50是原方程的解,且符合题意,
答:这种篮球的标价为每个50元;
(2)购买100个篮球,最少的费用为3850元,
单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
单独在B超市购买:100×50×0.8=4000元,
在A、B两个超市共买100个,
根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
21、(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元
【解析】
利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;
【详解】
(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;
(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,
∵抛物线开口向下,
∴当x=11时,y有最大值1805,
答:售价定为189元,利润最大1805元;
【点睛】
本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.
22、商人盈利的可能性大.
【解析】
试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可.
试题解析:商人盈利的可能性大.
商人收费:80××2=80(元),商人奖励:80××3+80××1=60(元),因为80>60,所以商人盈利的可能性大.
23、(1)证明见解析;(2)AG=;(3)证明见解析.
【解析】
(1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;
(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;
(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.
【详解】
解:(1)∵四边形ABCD是正方形,
∴AD∥BC,AB∥CD,AD=CD,
∵GF∥BE,
∴GF∥BC,
∴GF∥AD,
∴,
∵AB∥CD,
,
∵AD=CD,
∴GF=BF;
(2)∵EB=1,BC=4,
∴=4,AE=,
∴=4,
∴AG=;
(3)延长GF交AM于H,
∵GF∥BC,
∴FH∥BC,
∴,
∴,
∵BM=BE,
∴GF=FH,
∵GF∥AD,
∴,,
∴,
∴,
∴FO•ED=OD•EF.
【点睛】
本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.
24、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)
【解析】
(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
【详解】
(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
∴A(1,0),B(3,0),
∴抛物线的对称轴为x=2,
将x=2代入抛物线的解析式得:y=-1,
∴C(2,-1);
(2)①将x=0代入抛物线的解析式得:y=3,
∴抛物线与y轴交点坐标为(0,3),
如图所示:作直线y=3,
由图象可知:直线y=3与“L双抛图形”有3个交点,
故答案为3;
②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,
故答案为0<t<1.
③如图2所示:
∵PQ∥AC且PQ=AC,
∴四边形ACQP为平行四边形,
又∵点C的纵坐标为-1,
∴点P的纵坐标为1,
将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.
∴点P的坐标为(+2,1)或(-+2,1),
当点P(-1,0)时,也满足条件.
综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)
【点睛】
本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.
25、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
26、1
【解析】
试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.
试题解析:
解:|﹣1|+﹣(1﹣)0﹣()﹣1
=1+3﹣1﹣2
=1.
点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.
27、(1)y=60x;(2)300
【解析】
(1)由题图可知,甲组的y是x的正比例函数.
设甲组加工的零件数量y与时间x的函数关系式为y=kx.
根据题意,得6k=360,
解得k=60.
所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.
(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.
所以,解得a=300.
相关试卷
这是一份浙江省杭州北干2021-2022学年中考联考数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,化简•a5所得的结果是等内容,欢迎下载使用。
这是一份2021-2022学年云南弥勒市中考联考数学试卷含解析,共19页。试卷主要包含了下列计算正确的是,2016的相反数是,剪纸是我国传统的民间艺术,一、单选题等内容,欢迎下载使用。
这是一份2021-2022学年山东省菏泽市中考联考数学试卷含解析,共21页。试卷主要包含了下面几何的主视图是等内容,欢迎下载使用。