2021-2022学年上海市青浦区名校中考数学模拟试题含解析
展开
这是一份2021-2022学年上海市青浦区名校中考数学模拟试题含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,-10-4的结果是,在代数式 中,m的取值范围是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )
A. B. C. D.
2.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则( )
A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a
3.下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
4.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为( )
A. B. C.6π D.以上答案都不对
5.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )
A.125° B.75° C.65° D.55°
6.-10-4的结果是( )
A.-7 B.7 C.-14 D.13
7.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
A. B.
C. D.
8.在代数式 中,m的取值范围是( )
A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠0
9.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
10.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=( )
A.40° B.110° C.70° D.140°
11.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是( )
A. B.
C. D.
12.sin60°的值为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.
14.分解因式:x2y﹣4xy+4y=_____.
15.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.
16.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.
17.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.
18.在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)观察下列等式:
第1个等式:a1=-1,
第2个等式:a2=,
第3个等式:a3==2-,
第4个等式:a4=-2,
…
按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.
20.(6分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
(1)请你补全条形统计图;
(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;
(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
21.(6分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.
22.(8分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
②若BC=DE=4,当AE取最大值时,求AF的值.
23.(8分)抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.
(1)如图1,若A(-1,0),B(3,0),
① 求抛物线的解析式;
② P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;
(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.
24.(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;
(2)将条形统计图补充完整;
(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?
(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.
25.(10分)如图所示,在中,,
(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)
(2)连接AP当为多少度时,AP平分.
26.(12分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.
27.(12分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.
考点:几何体的三视图
2、A
【解析】
解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.
3、A
【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
B、x2+x2+x2=3x2,故选项B不符合题意;
C、x2•x3=x5,故选项C不符合题意;
D、x4+x2,无法计算,故选项D不符合题意.
故选A.
4、D
【解析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.
【详解】
阴影面积=π.
故选D.
【点睛】
本题的关键是理解出,线段AB扫过的图形面积为一个环形.
5、D
【解析】
延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
【详解】
延长CB,延长CB,
∵AD∥CB,
∴∠1=∠ADE=145,
∴∠DBC=180−∠1=180−125=55.
故答案选:D.
【点睛】
本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
6、C
【解析】
解:-10-4=-1.故选C.
7、D
【解析】
试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
∴△≥0,
∴4﹣4(k+1)≥0,
解得k≤0,
∵x1+x2=﹣2,x1•x2=k+1,
∴﹣2﹣(k+1)<﹣1,
解得k>﹣2,
不等式组的解集为﹣2<k≤0,
在数轴上表示为:
,
故选D.
点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
8、D
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
由题意可知:
解得:m≤3且m≠0
故选D.
【点睛】
本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.
9、D
【解析】
解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.
点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
10、B
【解析】
先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
【详解】
∵AB∥CD,
∴∠ACD+∠BAC=180°,
∵∠ACD=40°,
∴∠BAC=180°﹣40°=140°,
∵AE平分∠CAB,
∴∠BAE=∠BAC=×140°=70°,
∴∠DEA=180°﹣∠BAE=110°,
故选B.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
11、A
【解析】
当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.
【详解】
解:当点F在MD上运动时,0≤x<2,则:
y=S梯形ECDG-S△EFC-S△GDF=,
当点F在DA上运动时,2<x≤4,则:
y=,
综上,只有A选项图形符合题意,故选择A.
【点睛】
本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.
12、B
【解析】
解:sin60°=.故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.
【详解】如图,连接OE、AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵四边形ABCD是平行四边形,
∴AB=CD=4,∠B=∠D=30°,
∴AE=AB=2,BE==2,
∵OA=OB=OE,
∴∠B=∠OEB=30°,
∴∠BOE=120°,
∴S阴影=S扇形OBE﹣S△BOE
=
=,
故答案为.
【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.
14、y(x-2)2
【解析】
先提取公因式y,再根据完全平方公式分解即可得.
【详解】
原式==,
故答案为.
15、6或2.
【解析】
试题分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:
∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=;②点P在AD上时,如图:
先建立相似三角形,过E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(两角对应相等,两三角形相似),∴对应线段成比例:,代入相应数值:,∴EF=2.综上所述:EF长为6或2.
考点:翻折变换(折叠问题).
16、
【解析】
由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.
【详解】
详解:∵正方形ABCD,
∴∠B=90°.
∵AB=12,BM=5,
∴AM=1.
∵ME⊥AM,
∴∠AME=90°=∠B.
∵∠BAE=90°,
∴∠BAM+∠MAE=∠MAE+∠E,
∴∠BAM=∠E,
∴△ABM∽△EMA,
∴=,即=,
∴AE=,
∴DE=AE﹣AD=﹣12=.
故答案为.
【点睛】
本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.
17、5
【解析】
根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.
【详解】
解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
则=,解得x=3,
所以另一段长为18-3=15,
因为15÷3=5,所以是第5张.
故答案为:5.
【点睛】
本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.
18、
【解析】
设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程.
【详解】
设羊价为x钱,
根据题意可得方程:,
故答案为:.
【点睛】
本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)=; (2).
【解析】
(1)根据题意可知,,,,
,…由此得出第n个等式:an=;
(2)将每一个等式化简即可求得答案.
【详解】
解:(1)∵第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
∴第n个等式:an=;
(2)a1+a2+a3+…+an
=(
=.
故答案为;.
【点睛】
此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.
20、(1)详见解析;(2)72°;(3)
【解析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
(2)用360°乘以C类别人数所占比例即可得;
(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
【详解】
解:(1)∵ 抽 查的总人数为:(人)
∴ 类人数为:(人)
补全条形统计图如下:
(2)“碳酸饮料”所在的扇形的圆心角度数为:
(3)设男生为、,女生为、、,
画树状图得:
∴恰好抽到一男一女的情况共有12 种,分别是
∴ (恰好抽到一男一女).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21、(1)证明见解析;(2).
【解析】
试题分析:利用矩形角相等的性质证明△DAE∽△AMB.
试题解析:
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAE=∠AMB,
又∵∠DEA=∠B=90°,
∴△DAE∽△AMB.
(2)由(1)知△DAE∽△AMB,
∴DE:AD=AB:AM,
∵M是边BC的中点,BC=6,
∴BM=3,
又∵AB=4,∠B=90°,
∴AM=5,
∴DE:6=4:5,
∴DE=.
22、(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=.
【解析】
(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
【详解】
(1)BG=AE.
理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴AD⊥BC,BD=CD,
∴∠ADB=∠ADC=90°.
∵四边形DEFG是正方形,
∴DE=DG.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△ADE≌△BDG(SAS),
∴BG=AE.
故答案为BG=AE;
(2)①成立BG=AE.
理由:如图2,连接AD,
∵在Rt△BAC中,D为斜边BC中点,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°.
∵四边形EFGD为正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△BDG≌△ADE(SAS),
∴BG=AE;
②∵BG=AE,
∴当BG取得最大值时,AE取得最大值.
如图3,当旋转角为270°时,BG=AE.
∵BC=DE=4,
∴BG=2+4=6.
∴AE=6.
在Rt△AEF中,由勾股定理,得
AF= =,
∴AF=2 .
【点睛】
本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.
23、(1)①y=-x2+2x+3②(2)-1
【解析】
分析:(1)①把A、B的坐标代入解析式,解方程组即可得到结论;
②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.由CD=CA ,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,从而有tan∠ACD=tan∠ECD,
,即可得出AI、CI的长,进而得到.设EN=3x,则CN=4x,由tan∠CDO=tan∠EDN,得到,故设DN=x,则CD=CN-DN=3x=,解方程即可得出E的坐标,进而求出CE的直线解析式,联立解方程组即可得到结论;
(2)作DI⊥x轴,垂足为I.可以证明△EBD∽△DBC,由相似三角形对应边成比例得到,
即,整理得.令y=0,得:.
故,从而得到.由,得到,解方程即可得到结论.
详解:(1)①把A(-1,0),B(3,0)代入得:
,解得:,
∴
②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.
∵CD=CA ,OC⊥AD,∴ ∠DCO=∠ACO.
∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,
∴,AI=,
∴CI=,∴.
设EN=3x,则CN=4x.
∵tan∠CDO=tan∠EDN,
∴,∴DN=x,∴CD=CN-DN=3x=,
∴,∴DE= ,E(,0).
CE的直线解析式为:,
,解得:.
点P的横坐标 .
(2)作DI⊥x轴,垂足为I.
∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.
∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.
∵∠BID=∠DIA,∴△EBD∽△DBC,∴,
∴,
∴.
令y=0,得:.
∴,∴.
∵,
∴,
解得:yD=0或-1.
∵D为x轴下方一点,
∴,
∴D的纵坐标-1 .
点睛:本题是二次函数的综合题.考查了二次函数解析式、性质,相似三角形的判定与性质,根与系数的关系.综合性比较强,难度较大.
24、 (1)120,54;(2)补图见解析;(3)660名;(4).
【解析】
(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;
(2)先计算出喜欢使用短信的人数,然后补全条形统计图;
(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;
(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.
【详解】
解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×=54°,
故答案为120、54;
(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),
条形统计图为:
(3)1200×=660,
所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;
(4)画树状图为:
共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,
所以甲乙两名同学恰好选中同一种沟通方式的概率.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.
25、(1)详见解析;(2)30°.
【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
【详解】
(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
∵EF为AB的垂直平分线,
∴PA=PB,
∴点P即为所求.
(2)如图,连接AP,
∵,
∴,
∵AP是角平分线,
∴,
∴,
∵,
∴∠PAC+∠PAB+∠B=90°,
∴3∠B=90°,
解得:∠B=30°,
∴当时,AP平分.
【点睛】
本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
26、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).
【解析】
试题分析:
(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;
(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;
(3)如下图2,作NP⊥AC于P,
由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,
在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长.
试题解析:
(1)如图1,连接OG.
∵EF切⊙O于G,
∴OG⊥EF,
∴∠AGO+∠AGE=90°,
∵CD⊥AB于H,
∴∠AHD=90°,
∴∠OAG=∠AKH=90°,
∵OA=OG,
∴∠AGO=∠OAG,
∴∠AGE=∠AKH,
∵∠EKG=∠AKH,
∴∠EKG=∠AGE,
∴KE=GE.
(2)设∠FGB=α,
∵AB是直径,
∴∠AGB=90°,
∴∠AGE=∠EKG=90°﹣α,
∴∠E=180°﹣∠AGE﹣∠EKG=2α,
∵∠FGB=∠ACH,
∴∠ACH=2α,
∴∠ACH=∠E,
∴CA∥FE.
(3)作NP⊥AC于P.
∵∠ACH=∠E,
∴sin∠E=sin∠ACH=,设AH=3a,AC=5a,
则CH=,tan∠CAH=,
∵CA∥FE,
∴∠CAK=∠AGE,
∵∠AGE=∠AKH,
∴∠CAK=∠AKH,
∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,
∵AK=,
∴,
∴a=1.AC=5,
∵∠BHD=∠AGB=90°,
∴∠BHD+∠AGB=180°,
在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,
∴∠ABG+∠HKG=180°,
∵∠AKH+∠HKG=180°,
∴∠AKH=∠ABG,
∵∠ACN=∠ABG,
∴∠AKH=∠ACN,
∴tan∠AKH=tan∠ACN=3,
∵NP⊥AC于P,
∴∠APN=∠CPN=90°,
在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b,
在Rt△CPN中,tan∠ACN==3,
∴CP=4b,
∴AC=AP+CP=13b,
∵AC=5,
∴13b=5,
∴b=,
∴CN===.
27、7.3米
【解析】
:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可.
【详解】
解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,
∴AH=HF,设AH=HF=x,则EF=2x,EH=x,
在Rt△AEB中,∵∠E=30°,AB=5米,
∴AE=2AB=10米,
∴x+x=10,
∴x=5﹣5,
∴EF=2x=10﹣10≈7.3米,
答:E与点F之间的距离为7.3米
【点睛】
本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.
相关试卷
这是一份上海市青浦区2021-2022学年中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。
这是一份2022年上海市杨浦区名校中考数学模拟试题含解析,共20页。试卷主要包含了答题时请按要求用笔,下列各组数中,互为相反数的是等内容,欢迎下载使用。
这是一份2022年上海市静安区、青浦区重点达标名校中考数学模拟预测试卷含解析,共18页。试卷主要包含了﹣的绝对值是等内容,欢迎下载使用。