终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年四川省乐至县达标名校中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年四川省乐至县达标名校中考数学对点突破模拟试卷含解析第1页
    2021-2022学年四川省乐至县达标名校中考数学对点突破模拟试卷含解析第2页
    2021-2022学年四川省乐至县达标名校中考数学对点突破模拟试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省乐至县达标名校中考数学对点突破模拟试卷含解析

    展开

    这是一份2021-2022学年四川省乐至县达标名校中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了将一副三角尺,如果将直线l1,下列说法正确的是,方程的根是,我省2013年的快递业务量为1等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )

    A.(2,1) B.(2,0) C.(3,3) D.(3,1)
    2.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(    ).
    A.众数 B.中位数 C.平均数 D.方差
    3.若分式在实数范围内有意义,则实数的取值范围是( )
    A. B. C. D.
    4.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是(  )

    A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
    5.将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )

    A. B. C. D.
    6.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是(  )
    A.将l1向左平移2个单位 B.将l1向右平移2个单位
    C.将l1向上平移2个单位 D.将l1向下平移2个单位
    7.下列说法正确的是( )
    A.负数没有倒数 B.﹣1的倒数是﹣1
    C.任何有理数都有倒数 D.正数的倒数比自身小
    8.方程的根是( )
    A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
    9.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
    A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
    10.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )
    A.1.2(1+x)=2.5
    B.1.2(1+2x)=2.5
    C.1.2(1+x)2=2.5
    D.1.2(1+x)+1.2(1+x)2=2.5
    11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c–3bn(an+b)(n≠1),其中正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    12.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是 3 的倍数的概率为( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
    题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
    如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 .

    14.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.
    15.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1=  ▲  .
    16.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.

    17.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.
    18.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是  .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
    如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
    20.(6分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.
    21.(6分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.

    (1)求证:AE是⊙O的切线;
    (2)如果AB=4,AE=2,求⊙O的半径.
    22.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
    (1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
    (2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?

    23.(8分)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

    24.(10分)我们知道中,如果,,那么当时,的面积最大为6;
    (1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
    (2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
    25.(10分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

    26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
    (1)求抛物线解析式并求出点D的坐标;
    (2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
    (3)当△CPE是等腰三角形时,请直接写出m的值.

    27.(12分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.

    (1)求m,k的值;
    (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
    【详解】
    由题意得,△ODC∽△OBA,相似比是,
    ∴,
    又OB=6,AB=3,
    ∴OD=2,CD=1,
    ∴点C的坐标为:(2,1),
    故选A.
    【点睛】
    本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
    2、B
    【解析】
    分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.
    详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,
    故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
    故选B.
    点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数
    3、D
    【解析】
    根据分式有意义的条件即可求出答案.
    【详解】
    解:由分式有意义的条件可知:,

    故选:.
    【点睛】
    本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
    4、C
    【解析】
    利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
    【详解】
    解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
    ∴a+b<1,ab<1,a﹣b<1,a÷b<1.
    故选:C.
    5、C
    【解析】
    先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.
    【详解】
    ∵点D为斜边AB的中点,
    ∴CD=AD=DB,
    ∴∠ACD=∠A=30°,∠BCD=∠B=60°,
    ∵∠EDF=90°,
    ∴∠CPD=60°,
    ∴∠MPD=∠NCD,
    ∵△EDF绕点D顺时针方向旋转α(0°<α<60°),
    ∴∠PDM=∠CDN=α,
    ∴△PDM∽△CDN,
    ∴=,
    在Rt△PCD中,∵tan∠PCD=tan30°=,
    ∴=tan30°=.
    故选:C.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.
    6、C
    【解析】
    根据“上加下减”的原则求解即可.
    【详解】
    将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
    故选:C.
    【点睛】
    本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
    7、B
    【解析】
    根据倒数的定义解答即可.
    【详解】
    A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.
    【点睛】
    本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.
    8、C
    【解析】
    试题解析:x(x+1)=0,
    ⇒x=0或x+1=0,
    解得x1=0,x1=-1.
    故选C.
    9、B
    【解析】
    试题分析:“960万”用科学记数法表示为9.6×106,故选B.
    考点:科学记数法—表示较大的数.
    10、C
    【解析】
    试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:
    1.2(1+x)2=2.5,
    故选C.
    11、B
    【解析】
    ①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
    【详解】
    ①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
    ②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
    ③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
    ④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
    ⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
    ∴③④⑤正确.
    故选B.
    【点睛】
    本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
    12、C
    【解析】
    根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.
    【详解】
    解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9,
    ∴是 3 的倍数的概率,
    故答案为:C.
    【点睛】
    本题考查了概率的计算,解题的关键是熟知概率的计算公式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(x+1);.
    【解析】
    试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.
    故答案为(x+1),.
    考点:由实际问题抽象出一元二次方程;勾股定理的应用.
    14、1
    【解析】
    观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.
    【详解】
    由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,
    个位数字1,3,1,5循环出现,四个一组,
    2019÷4=504…3,
    ∴22019﹣1的个位数是1.
    故答案为1.
    【点睛】
    本题考查数的循环规律,确定循环规律,找准余数是解题的关键.
    15、
    【解析】
    连接BE,

    ∵在线段AC同侧作正方形ABMN及正方形BCEF,
    ∴BE∥AM.∴△AME与△AMB同底等高.
    ∴△AME的面积=△AMB的面积.
    ∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
    ∴当n≥2时,
    16、2, 0≤x≤2或≤x≤2.
    【解析】
    (2)由图象直接可得答案;
    (2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
    【详解】
    (2)由 函数图象可知,乙比甲晚出发2小时.
    故答案为2.
    (2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
    一是甲出发,乙还未出发时:此时0≤x≤2;
    二是乙追上甲后,直至乙到达终点时:
    设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
    ∴k=5,
    ∴甲的函数解析式为:y=5x①
    设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
    解得 ,
    ∴乙的函数解析式为:y=20x﹣20 ②
    由①②得 ,
    ∴ ,
    故 ≤x≤2符合题意.
    故答案为0≤x≤2或≤x≤2.
    【点睛】
    此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
    17、 (x﹣1)(x﹣2)
    【解析】
    根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.
    【详解】
    解:已知方程的两根为:x1=1,x2=2,可得:
    (x﹣1)(x﹣2)=0,
    ∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).
    【点睛】
    一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)
    18、(0,0)或(0,﹣8)或(﹣6,0)
    【解析】
    由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
    【详解】
    解:∵P(﹣3,﹣4)到原点距离为5,
    而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
    ∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
    故答案是:(0,0)或(0,﹣8)或(﹣6,0).


    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
    【解析】
    (1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
    (2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
    (3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
    【详解】
    解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
    (2)△BDF∽△CED∽△DEF,证明如下:
    ∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
    又∵∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵AB=AC,
    ∴∠B=∠C.
    ∴△BDF∽△CED.
    ∴.
    ∵BD=CD,
    ∴,即.
    又∵∠C=∠EDF,
    ∴△CED∽△DEF.
    ∴△BDF∽△CED∽△DEF.
    (3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.

    ∵AB=AC,D是BC的中点,
    ∴AD⊥BC,BD=BC=1.
    在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
    ∴AD=2.
    ∴S△ABC=•BC•AD=×3×2=42,
    S△DEF=S△ABC=×42=3.
    又∵•AD•BD=•AB•DH,
    ∴.
    ∵△BDF∽△DEF,
    ∴∠DFB=∠EFD.
    ∵DH⊥BF,DG⊥EF,
    ∴∠DHF=∠DGF.
    又∵DF=DF,
    ∴△DHF≌△DGF(AAS).
    ∴DH=DG=.
    ∵S△DEF=·EF·DG=·EF·=3,
    ∴EF=4.
    【点睛】
    本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
    20、,.
    【解析】
    先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
    【详解】
    解:原式


    当时
    原式
    【点睛】
    考查分式的混合运算,掌握运算顺序是解题的关键.
    21、(1)见解析;(1)⊙O半径为
    【解析】
    (1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE是⊙O的切线;
    (1)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.
    【详解】
    解:(1)连接OA,

    ∵OA=OD,
    ∴∠1=∠1.
    ∵DA平分∠BDE,
    ∴∠1=∠2.
    ∴∠1=∠2.∴OA∥DE.
    ∴∠OAE=∠4,
    ∵AE⊥CD,∴∠4=90°.
    ∴∠OAE=90°,即OA⊥AE.
    又∵点A在⊙O上,
    ∴AE是⊙O的切线.
    (1)∵BD是⊙O的直径,
    ∴∠BAD=90°.
    ∵∠3=90°,∴∠BAD=∠3.
    又∵∠1=∠2,∴△BAD∽△AED.
    ∴,
    ∵BA=4,AE=1,∴BD=1AD.
    在Rt△BAD中,根据勾股定理,
    得BD=.
    ∴⊙O半径为.
    22、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
    【解析】
    试题分析:
    (1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
    (2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
    试题解析:
    (1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
    (2)列表法:

    A
    B
    C
    D
    A

    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)

    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)

    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)

    由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
    ∴P2=,
    ∵P1=,P2=,P1≠P2
    ∴淇淇与嘉嘉抽到勾股数的可能性不一样.
    23、20千米
    【解析】
    由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.
    【详解】
    解:设基地E应建在离A站x千米的地方.
    则BE=(50﹣x)千米
    在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2
    ∴302+x2=DE2
    在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2
    ∴202+(50﹣x)2=CE2
    又∵C、D两村到E点的距离相等.
    ∴DE=CE
    ∴DE2=CE2
    ∴302+x2=202+(50﹣x)2
    解得x=20
    ∴基地E应建在离A站20千米的地方.
    考点:勾股定理的应用.
    24、 (1)当,时有最大值1;(2)当时,面积有最大值32.
    【解析】
    (1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
    (2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
    【详解】
    (1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
    最大面积为×6×(16-6)=1.
    故当,时有最大值1;
    (2)当,时有最大值,
    设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,








    ∴抛物线开口向下
    ∴当 时,面积有最大值32.
    【点睛】
    本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
    25、观景亭D到南滨河路AC的距离约为248米.
    【解析】
    过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
    【详解】
    过点D作DE⊥AC,垂足为E,设BE=x,
    在Rt△DEB中,tan∠DBE=,
    ∵∠DBC=65°,
    ∴DE=xtan65°.
    又∵∠DAC=45°,
    ∴AE=DE.
    ∴132+x=xtan65°,
    ∴解得x≈115.8,
    ∴DE≈248(米).
    ∴观景亭D到南滨河路AC的距离约为248米.

    26、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
    【解析】
    (1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
    (2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
    (3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
    【详解】
    (1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    把C(0,3)代入y=﹣x+n,解得n=3,
    ∴直线CD的解析式为y=﹣x+3,
    解方程组,解得
    或,
    ∴D点坐标为(,);
    (2)存在.
    设P(m,﹣m2+2m+3),则E(m,﹣m+3),
    ∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
    ∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
    当m=时,△CDP的面积存在最大值,最大值为;
    (3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
    当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
    当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
    综上所述,m的值为或或.

    【点睛】
    本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
    27、(1)m=3,k=12;(2)或
    【解析】
    【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.
    【详解】
    解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=的图像上,
    ∴k=xy,
    ∴k=m(m+1)=(m+3)(m-1),
    ∴m2+m=m2+2m-3,解得m=3,
    ∴k=3×(3+1)=12.
    (2)∵m=3,
    ∴A(3,4),B(6,2).
    设直线AB的函数表达式为y=k′x+b(k′≠0),

    解得
    ∴直线AB的函数表达式为y=-x+6.
    (3)M(3,0),N(0,2)或M(-3,0),N(0,-2).
    解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.
    ∵由(1)知:A(3,4),B(6,2),
    ∴AP=PM=2,BP=PN=3,
    ∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).

    【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.

    相关试卷

    2021-2022学年浙江省杭州北干重点达标名校中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年浙江省杭州北干重点达标名校中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。

    2021-2022学年浙江省东阳达标名校中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年浙江省东阳达标名校中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了计算4+等内容,欢迎下载使用。

    2021-2022学年山西省永济市重点达标名校中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年山西省永济市重点达标名校中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,已知a=等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map