2021-2022学年上海市交大二附中中考数学对点突破模拟试卷含解析
展开
这是一份2021-2022学年上海市交大二附中中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,在直角坐标系中,已知点P,计算4+等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )
A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
2.的绝对值是( )
A.8 B.﹣8 C. D.﹣
3.把6800000,用科学记数法表示为( )
A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×108
4.如图,在中,,的垂直平分线交于点,垂足为.如果,则的长为( )
A.2 B.3 C.4 D.6
5.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
A. B. C. D.
6.下列立体图形中,主视图是三角形的是( )
A. B. C. D.
7.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
8.在实数﹣3.5、、0、﹣4中,最小的数是( )
A.﹣3.5 B. C.0 D.﹣4
9.计算4+(﹣2)2×5=( )
A.﹣16 B.16 C.20 D.24
10.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )
A.1 B.2 C.3 D.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.
12.三人中有两人性别相同的概率是_____________.
13.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)
14.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
15.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.
16.分解因式:__________.
三、解答题(共8题,共72分)
17.(8分)计算:
18.(8分)先化简,再求值:,其中x=.
19.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.
求BC的长;求证:PB是⊙O的切线.
20.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)
21.(8分)阅读材料,解答问题.
材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面积为1.”
问题:
(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);
(2)猜想四边形Pn﹣1PnPn+1Pn+2的面积,并说明理由(利用图2);
(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形Pn﹣1PnPn+1Pn+2的面积(直接写出答案).
22.(10分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:
(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.
(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?
23.(12分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
24. (1)如图,四边形为正方形,,那么与相等吗?为什么?
(2)如图,在中,,,为边的中点,于点,交于,求的值
(3)如图,中,,为边的中点,于点,交于,若,,求.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10700=1.07×104,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、C
【解析】
根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
【详解】
解:.
故选
【点睛】
此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
3、B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
详解:把6800000用科学记数法表示为6.8×1.
故选B.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、C
【解析】
先利用垂直平分线的性质证明BE=CE=8,再在Rt△BED中利用30°角的性质即可求解ED.
【详解】
解:因为垂直平分,
所以,
在中,,
则;
故选:C.
【点睛】
本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.
5、D
【解析】
根据中心对称图形的概念求解.
【详解】
解:A.不是中心对称图形,本选项错误;
B.不是中心对称图形,本选项错误;
C.不是中心对称图形,本选项错误;
D.是中心对称图形,本选项正确.
故选D.
【点睛】
本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、A
【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
【详解】
A、圆锥的主视图是三角形,符合题意;
B、球的主视图是圆,不符合题意;
C、圆柱的主视图是矩形,不符合题意;
D、正方体的主视图是正方形,不符合题意.
故选A.
【点睛】
主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
7、D
【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;
让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
【详解】
∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
故选D.
【点睛】
本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
8、D
【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可
【详解】
在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.
【点睛】
掌握实数比较大小的法则
9、D
【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.
详解:4+(﹣2)2×5
=4+4×5
=4+20
=24,
故选:D.
点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
10、B
【解析】
根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.
【详解】
∴∠ADC=∠BEC=90°.
∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,
∠DCA=∠CBE,
在△ACD和△CBE中,,
∴△ACD≌△CBE(AAS),
∴CE=AD=3,CD=BE=1,
DE=CE−CD=3−1=2,
故答案选:B.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.
【详解】
∵线段c是线段a和线段b的比例中项,
∴,
解得(线段是正数,负值舍去),
∴,
故答案为:1.
【点睛】
本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.
12、1
【解析】分析:
由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.
详解:
∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,
∴三人中至少有两个人的性别是相同的,
∴P(三人中有二人性别相同)=1.
点睛:列出本题中所有的等可能结果是解题的关键.
13、>
【解析】
要比较甲、乙方差的大小,就需要求出甲、乙的方差;
首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;
接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.
【详解】
甲组的平均数为:=4,
S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,
乙组的平均数为: =4,
S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,
∵>,
∴S甲2>S乙2.
故答案为:>.
【点睛】
本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.
14、1
【解析】
分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
∴k=1×1=1.
点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
15、1
【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴当m﹣n=4时,原式=2×42=1.故答案为:1.
16、a(a -4)2
【解析】
首先提取公因式a,进而利用完全平方公式分解因式得出即可.
【详解】
故答案为:
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
三、解答题(共8题,共72分)
17、5
【解析】
本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式=4-8×0.125+1+1=4-1+2=5
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算.
18、1+
【解析】
先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
【详解】
解:原式
当时,
原式=
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
19、(1)BC=2;(2)见解析
【解析】
试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;
(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.
(1)解:如图,连接OB.
∵AB⊥OC,∠AOC=60°,
∴∠OAB=30°,
∵OB=OA,
∴∠OBA=∠OAB=30°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC的等边三角形,
∴BC=OC.
又OC=2,
∴BC=2;
(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.
∵OC=CP,
∴BC=PC,
∴∠P=∠CBP.
又∵∠OCB=60°,∠OCB=2∠P,
∴∠P=30°,
∴∠OBP=90°,即OB⊥PB.
又∵OB是半径,
∴PB是⊙O的切线.
考点:切线的判定.
20、(20-5)千米.
【解析】
分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
详解:过点B作BD⊥ AC,
依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,设AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cos∠CBD=tan60°=,
即:BC=(千米),
故B、C两地的距离为(20-5)千米.
点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
21、 (1)2,2;(2)2,理由见解析;(3)2.
【解析】
(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;
(2)(3)由图可知,Pn﹣1、Pn、Pn+1、Pn+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,
可得Pn﹣1、Pn、Pn+1、Pn+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2来解答.
【详解】
(1)作P5H5垂直于x轴,垂足为H5,
由图可知SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2==2,
SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3==2;
(2)作Pn﹣1Hn﹣1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x轴,垂足为Hn﹣1、Hn、Hn+1、Hn+2,
由图可知Pn﹣1、Pn、Pn+1、Pn+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,
代入二次函数解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,
四边形Pn﹣1PnPn+1Pn+2的面积为S四边形Pn﹣1PnPn+1Pn+2
=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2
==2;
(3)S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2
=-=2.
【点睛】
本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,
22、(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)
【解析】
(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;
【详解】
(1)如图①中,
∵C(6,0),
∴BC=6
在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
由题意知,当0<t<6时,AD=BE=CF=t,
∴BD=CE=AF=6﹣t,
∴△ADF≌△CFE≌△BED(SAS),
∴EF=DF=DE,
∴△DEF是等边三角形,
∴不论t如何变化,△DEF始终为等边三角形;
(2)如图②中,作AH⊥BC于H,则AH=AB•sin60°=3,
∴S△AEC=×3×(6﹣t)=,
∵EQ∥AB,
∴△CEQ∽△ABC,
∴=()2=,即S△CEQ=S△ABC=×9=,
∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
∵a=﹣<0,
∴抛物线开口向下,有最大值,
∴当t=3时,△AEQ的面积最大为cm2,
(3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,
当AD为菱形的边时,可得P1(3,0),P3(6,3),
当AD为对角线时,P2(0,3),
综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).
【点睛】
本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
23、(1)50;4;5;画图见解析;(2)144°;(3)64
【解析】
(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
【详解】
解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
∴=50(人).
∵课外阅读4小时的人数是32%,
∴50×32%=16(人),
∴男生人数=16﹣8=8(人);
∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
∴中位数是4小时,众数是5小时.
补全图形如图所示.
故答案为50,4,5;
(2)∵课外阅读5小时的人数是20人,
∴×360°=144°.
故答案为144°;
(3)∵课外阅读6小时的人数是4人,
∴800×=64(人).
答:九年级一周课外阅读时间为6小时的学生大约有64人.
【点睛】
本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
24、 (1)相等,理由见解析;(2)2;(3).
【解析】
(1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
(2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
(3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
【详解】
解:(1)BF=AE,理由:
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,
∴△ABF≌△DAE,
∴BF=AE,
(2) 如图2,
过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,
∴四边形ABCM是平行四边形,
∵∠ABC=90°,
∴▱ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵点D是BC中点,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,
∴
(3) 如图3,
在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵点D是BC中点,
∴BD=BC=2,
过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
∴四边形ABCN是平行四边形,
∵∠ABC=90°,∴▱ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,
∴
∴
∴CP=
同(2)的方法,△CFP∽△AFB,
∴
∴
∴CF=.
【点睛】
本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
相关试卷
这是一份黄冈市2021-2022学年中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2022年上海市普陀区中考数学对点突破模拟试卷含解析,共16页。
这是一份2022届江苏省南师附中集团中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了有一组数据等内容,欢迎下载使用。