|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年山西省吕梁市汾阳市十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年山西省吕梁市汾阳市十校联考最后数学试题含解析01
    2021-2022学年山西省吕梁市汾阳市十校联考最后数学试题含解析02
    2021-2022学年山西省吕梁市汾阳市十校联考最后数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山西省吕梁市汾阳市十校联考最后数学试题含解析

    展开
    这是一份2021-2022学年山西省吕梁市汾阳市十校联考最后数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,计算6m3÷的结果是,-3的相反数是,下列运算正确的是,的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=(x>0)上,则k的值为( )

    A.2 B.3 C.4 D.6
    2.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:
    ①a、b同号;
    ②当x=1和x=3时,函数值相等;
    ③4a+b=1;
    ④当y=﹣2时,x的值只能取1;
    ⑤当﹣1<x<5时,y<1.
    其中,正确的有(  )

    A.2个 B.3个 C.4个 D.5个
    3.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )

    A.32° B.64° C.77° D.87°
    4.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(  )
    ①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)

    A.1个 B.2个 C.3个 D.4个
    5.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )

    A. B. C. D.
    6.计算6m3÷(-3m2)的结果是(  )
    A.-3m B.-2m C.2m D.3m
    7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是(  )
    用水量x(吨)
    3
    4
    5
    6
    7
    频数
    1
    2
    5
    4﹣x
    x
    A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
    8.-3的相反数是(  )
    A. B.3 C. D.-3
    9.下列运算正确的是(  )
    A.x•x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x6
    10.的绝对值是(  )
    A.8 B.﹣8 C. D.﹣
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.

    12.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.

    13.分解因式:x3﹣2x2+x=______.
    14.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.

    15.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是  .
    16.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
    三、解答题(共8题,共72分)
    17.(8分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.

    18.(8分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
    (1)求证:PC∥BD;
    (2)若⊙O的半径为2,∠ABP=60°,求CP的长;
    (3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.

    19.(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.
    (1)测试不合格人数的中位数是   .
    (2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;
    (3)在(2)的条件下补全条形统计图和扇形统计图.

    20.(8分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
    (1)用列表或画树状图的方法写出点Q的所有可能坐标;
    (1)求点Q落在直线y=﹣x﹣1上的概率.
    21.(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
    ①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
    时间(第x天)
    1
    2
    3
    10

    日销售量(n件)
    198
    196
    194
    ?

    ②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
    时间(第x天)
    1≤x<50
    50≤x≤90
    销售价格(元/件)
    x+60
    100
    (1)求出第10天日销售量;
    (2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
    (3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
    22.(10分)先化简,再求值:,其中x=﹣1.
    23.(12分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
    (1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
    (2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
    (3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
    24.如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.
    【详解】
    作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.
    ∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=2.
    故选B.

    【点睛】
    本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了坐标与图形变化﹣旋转.
    2、A
    【解析】
    根据二次函数的性质和图象可以判断题目中各个小题是否成立.
    【详解】
    由函数图象可得,
    a>1,b<1,即a、b异号,故①错误,
    x=-1和x=5时,函数值相等,故②错误,
    ∵-=2,得4a+b=1,故③正确,
    由图象可得,当y=-2时,x=1或x=4,故④错误,
    由图象可得,当-1<x<5时,y<1,故⑤正确,
    故选A.
    【点睛】
    考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
    3、C
    【解析】
    试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.
    考点:旋转的性质.
    4、C
    【解析】
    ①如图,由平行线等分线段定理(或分线段成比例定理)易得:;
    ②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;
    ③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.
    【详解】
    解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,
    ∴,
    故 ①正确;
    ②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,
    ∵DE=1,OA'=1,
    ∴S△AED=×1×1=,

    ∵OE∥AA'∥GB',OA'=A'B',
    ∴AE=AG,
    ∴△AED∽△AGB且相似比=1,
    ∴△AED≌△AGB,
    ∴S△ABG=,
    同理得:G为AC中点,
    ∴S△ABG=S△BCG=,
    ∴S△ABC=1,
    故 ②正确;
    ③由②知:△AED≌△AGB,
    ∴BG=DE=1,
    ∵BG∥EF,
    ∴△BGC∽△FEC,
    ∴,
    ∴EF=1.即OF=5,
    故③正确;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,
    故④错误;
    故选C.
    【点睛】
    本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.
    5、A
    【解析】
    过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
    【详解】
    过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
    ∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
    ∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
    ∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
    ∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
    故选A.

    【点睛】
    本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
    6、B
    【解析】
    根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
    【详解】
    6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
    故选B.
    7、B
    【解析】
    由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
    【详解】
    ∵6吨和7吨的频数之和为4-x+x=4,
    ∴频数之和为1+2+5+4=12,
    则这组数据的中位数为第6、7个数据的平均数,即=5,
    ∴对于不同的正整数x,中位数不会发生改变,
    ∵后两组频数和等于4,小于5,
    ∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
    故选B.
    【点睛】
    本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
    8、B
    【解析】
    根据相反数的定义与方法解答.
    【详解】
    解:-3的相反数为.
    故选:B.
    【点睛】
    本题考查相反数的定义与求法,熟练掌握方法是关键.
    9、A
    【解析】
    根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:
    A、x•x4=x5,原式计算正确,故本选项正确;
    B、x6÷x3=x3,原式计算错误,故本选项错误;
    C、3x2﹣x2=2x2,原式计算错误,故本选项错误;
    D、(2x2)3=8x,原式计算错误,故本选项错误.
    故选A.
    10、C
    【解析】
    根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
    ①当a是正有理数时,a的绝对值是它本身a;
    ②当a是负有理数时,a的绝对值是它的相反数﹣a;
    ③当a是零时,a的绝对值是零.
    【详解】
    解:.
    故选
    【点睛】
    此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣1
    【解析】
    连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
    【详解】
    如图:

    连接DB,若Q点落在BD上,此时和最短,且为,
    设AP=x,则PD=1﹣x,PQ=x.
    ∵∠PDQ=45°,
    ∴PD=PQ,即1﹣x=,
    ∴x=﹣1,
    ∴AP=﹣1,
    ∴tan∠ABP==﹣1,
    故答案为:﹣1.
    【点睛】
    本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.
    12、1
    【解析】
    解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.

    点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.
    13、x(x-1)2.
    【解析】
    由题意得,x3﹣2x2+x= x(x﹣1)2
    14、2
    【解析】
    连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.
    【详解】
    连接OC,

    ∵PC是⊙O的切线,
    ∴OC⊥PC,
    ∴∠OCP=90°,
    ∵PC=2,OC=2,
    ∴OP===4,
    ∴∠OPC=30°,
    ∴∠COP=60°,
    ∵OC=OB=2,
    ∴△OCB是等边三角形,
    ∴BC=OB=2,
    故答案为2
    【点睛】
    本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    15、(0,0)或(0,﹣8)或(﹣6,0)
    【解析】
    由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
    【详解】
    解:∵P(﹣3,﹣4)到原点距离为5,
    而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
    ∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
    故答案是:(0,0)或(0,﹣8)或(﹣6,0).

    16、2.5×1
    【解析】
    先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    【详解】
    1 300 000 000÷52÷1 000(千克)=25 000(千克)=2.5×1(千克).
    故答案为2.5×1.
    【点睛】
    本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.

    三、解答题(共8题,共72分)
    17、.
    【解析】
    试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
    试题解析:解:画树状图如答图:

    ∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
    ∴P(A,C两个区域所涂颜色不相同)=.
    考点:1.画树状图或列表法;2.概率.
    18、(1)证明见解析;(2)+;(3)的值不变,.
    【解析】
    (1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
    (2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
    (3)证明△CBP∽△ABD,根据相似三角形的性质解答.
    【详解】
    (1)证明:∵△ABC是等腰直角三角形,且AC=BC,
    ∴∠ABC=45°,∠ACB=90°,
    ∴∠APC=∠ABC=45°,
    ∴AB为⊙O的直径,
    ∴∠APB=90°,
    ∵PD=PB,
    ∴∠PBD=∠D=45°,
    ∴∠APC=∠D=45°,
    ∴PC∥BD;
    (2)作BH⊥CP,垂足为H,

    ∵⊙O的半径为2,∠ABP=60°,
    ∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
    在Rt△BCH中,CH=BC•cos∠BCH=,
    BH=BC•sin∠BCH=,
    在Rt△BHP中,PH=BH=,
    ∴CP=CH+PH=+;
    (3)的值不变,
    ∵∠BCP=∠BAP,∠CPB=∠D,
    ∴△CBP∽△ABD,
    ∴=,
    ∴=,即=.
    【点睛】
    本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.
    19、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.
    【解析】
    (1)将四次测试结果排序,结合中位数的定义即可求出结论;
    (2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;
    (3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.
    【详解】
    解:(1)将四次测试结果排序,得:30,40,50,60,
    ∴测试不合格人数的中位数是(40+50)÷2=1.
    故答案为1;
    (2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),
    ∴第四次测试合格人数为1×2﹣18=72(人).
    设这两次测试的平均增长率为x,
    根据题意得:50(1+x)2=72,
    解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),
    ∴这两次测试的平均增长率为20%;
    (3)50×(1+20%)=60(人),
    (60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,
    1﹣1%=55%.
    补全条形统计图与扇形统计图如解图所示.

    【点睛】
    本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.
    20、 (1)见解析;(1)
    【解析】
    试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可.
    (1)由题意得


    1

    1

    -1

    (1,-1)

    (1,-1)

    -1

    (1,-1)

    (1,-1)

    -2

    (1,-2)

    (1,-2)

    (1)共有6种等可能情况,符合条件的有1种
    P(点Q在直线y=−x−1上)=.
    考点:概率公式
    点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.
    21、(1)1件;(2)第40天,利润最大7200元;(3)46天
    【解析】
    试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
    (2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
    (3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
    试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
    所以n关于x的一次函数表达式为n=-2x+200;
    当x=10时,n=-2×10+200=1.
    (2)设销售该产品每天利润为y元,y关于x的函数表达式为:
    当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
    ∵-2<0,∴当x=40时,y有最大值,最大值是7200;
    当50≤x≤90时,y=-120x+12000,
    ∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
    综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
    (3)在该产品销售的过程中,共有46天销售利润不低于5400元.
    22、-2.
    【解析】
    根据分式的运算法化解即可求出答案.
    【详解】
    解:原式=,
    当x=﹣1时,原式=.
    【点睛】
    熟练运用分式的运算法则.
    23、(1);(1) ;(3);
    【解析】
    (1)直接根据概率公式求解;
    (1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;
    (3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.
    【详解】
    解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
    (1)画树状图为:

    共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,
    所以一个径赛项目和一个田赛项目的概率P1==;
    (3)两个项目都是径赛项目的结果数为6,
    所以两个项目都是径赛项目的概率P1==.
    故答案为.
    考点:列表法与树状图法.
    24、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
    【解析】
    (1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
    (2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
    【详解】
    (1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
    ∴﹣a+3=2,b=﹣×4+3,
    ∴a=2,b=1,
    ∴点A的坐标为(2,2),点B的坐标为(4,1),
    又∵点A(2,2)在反比例函数y=的图象上,
    ∴k=2×2=4,
    ∴反比例函数的表达式为y=(x>0);
    (2)延长CA交y轴于点E,延长CB交x轴于点F,

    ∵AC∥x轴,BC∥y轴,
    则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
    ∴四边形OECF为矩形,且CE=4,CF=2,
    ∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
    =2×4﹣×2×2﹣×4×1
    =4,
    设点P的坐标为(0,m),
    则S△OAP=×2•|m|=4,
    ∴m=±4,
    ∴点P的坐标为(0,4)或(0,﹣4).
    【点睛】
    此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.

    相关试卷

    山西省吕梁市汾阳市重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份山西省吕梁市汾阳市重点中学2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了下列命题是真命题的个数有等内容,欢迎下载使用。

    山西省吕梁市汾阳市2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份山西省吕梁市汾阳市2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    山西省(运城地区)达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份山西省(运城地区)达标名校2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map