2021-2022学年陕西省西安市未央区中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )
A. B. C. D.
2.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
3.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )
A.90° B.30° C.45° D.60°
4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
5.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
A.2﹣ B.1 C. D.﹣l
6.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )
A.8×107 B.880×108 C.8.8×109 D.8.8×1010
7.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为( )
A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
8.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是( )
A.3 B.﹣ C.﹣3 D.﹣6
9.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
10.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为( )
A.76° B.74° C.72° D.70°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:+=______.
12.一个正多边形的每个内角等于,则它的边数是____.
13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
14.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.
15.因式分解: =
16.如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____.
三、解答题(共8题,共72分)
17.(8分)计算:﹣22﹣+|1﹣4sin60°|
18.(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:
(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.
(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?
19.(8分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.
甲
乙
丙
每辆汽车能装的数量(吨)
4
2
3
每吨水果可获利润(千元)
5
7
4
(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
20.(8分)关于x的一元二次方程有两个实数根,则m的取值范围是( )
A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<1
21.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.
22.(10分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.
23.(12分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.
(1)求∠C的度数;
(2)求证:BC是⊙O的切线.
24.我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.
故选A.
2、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
解:由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故选:B.
【点睛】
本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.
3、C
【解析】
根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
【详解】
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵△BEC绕点C旋转至△DFC的位置,
∴∠ECF=∠BCD=90°,CE=CF,
∴△CEF是等腰直角三角形,
∴∠EFC=45°.
故选:C.
【点睛】
本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.
4、B
【解析】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
5、D
【解析】
∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
∴AD⊥BC,B′C′⊥AB,
∴AD=BC=1,AF=FC′=AC′=1,
∴DC′=AC′-AD=-1,
∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
故选D.
【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
6、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
880亿=880 0000 0000=8.8×1010,
故选D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、A
【解析】
根据科学记数法的表示方法解答.
【详解】
解:把这个数用科学记数法表示为.
故选:.
【点睛】
此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
8、C
【解析】
如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
【详解】
解:如图,作CH⊥y轴于H.
由题意B(0,2),
∵
∴CH=1,
∵tan∠BOC=
∴OH=3,
∴C(﹣1,3),
把点C(﹣1,3)代入,得到k2=﹣3,
故选C.
【点睛】
本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
9、B
【解析】
二次函数,
所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
当x=2时,取得最大值,最大值为-3,选项B正确;
顶点坐标为(2,-3),选项C错误;
顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
故答案选B.
考点:二次函数的性质.
10、B
【解析】
直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.
【详解】
解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故选:B.
【点睛】
此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.
【详解】
解:原式=.
【点睛】
本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.
12、十二
【解析】
首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.
【详解】
∵一个正多边形的每个内角为150°,
∴它的外角为30°,
360°÷30°=12,
故答案为十二.
【点睛】
此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.
13、
【解析】
解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
14、
【解析】
根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.
【详解】
∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)
∴OA=0.5c,OB==,
∴S△AOB===
【点睛】
此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.
15、﹣3(x﹣y)1
【解析】
解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.
点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.
16、
【解析】
过O作OF⊥AO且使OF=AO,连接AF、CF,可知△AOF是等腰直角三角形,进而可得AF=AO,根据正方形的性质可得OB=OC,∠BOC=90°,由锐角互余的关系可得∠AOB=∠COF,进而可得△AOB≌△COF,即可证明AB=CF,当点A、C、F三点不共线时,根据三角形的三边关系可得AC+CF>AF,当点A、C、F三点共线时可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.
【详解】
如图,过O作OF⊥AO且使OF=AO,连接AF、CF,
∴∠AOF=90°,△AOF是等腰直角三角形,
∴AF=AO,
∵四边形BCDE是正方形,
∴OB=OC,∠BOC=90°,
∵∠BOC=∠AOF=90°,
∴∠AOB+∠AOC=∠COF+∠AOC,
∴∠AOB=∠COF,
又∵OB=OC,AO=OF,
∴△AOB≌△COF,
∴CF=AB=4,
当点A、C、F三点不共线时,AC+CF>AF,
当点A、C、F三点共线时,AC+CF=AC+AB=AF=7,
∴AF≤AC+CF=7,
∴AF的最大值是7,
∴AF=AO=7,
∴AO=.
故答案为
【点睛】
本题考查正方形的性质,全等三角形的判定与性质,熟练掌握相关定理及性质是解题关键.
三、解答题(共8题,共72分)
17、-1
【解析】
直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.
【详解】
解:原式=
=
=﹣1.
【点睛】
此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.
18、(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)
【解析】
(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;
【详解】
(1)如图①中,
∵C(6,0),
∴BC=6
在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
由题意知,当0<t<6时,AD=BE=CF=t,
∴BD=CE=AF=6﹣t,
∴△ADF≌△CFE≌△BED(SAS),
∴EF=DF=DE,
∴△DEF是等边三角形,
∴不论t如何变化,△DEF始终为等边三角形;
(2)如图②中,作AH⊥BC于H,则AH=AB•sin60°=3,
∴S△AEC=×3×(6﹣t)=,
∵EQ∥AB,
∴△CEQ∽△ABC,
∴=()2=,即S△CEQ=S△ABC=×9=,
∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
∵a=﹣<0,
∴抛物线开口向下,有最大值,
∴当t=3时,△AEQ的面积最大为cm2,
(3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,
当AD为菱形的边时,可得P1(3,0),P3(6,3),
当AD为对角线时,P2(0,3),
综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).
【点睛】
本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
19、(1)乙种水果的车有2辆、丙种水果的汽车有6辆;(2)乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆;(3)见解析.
【解析】
(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解
答;
(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组即可解答;
(3)设总利润为w千元,表示出w=10m+1.列出不等式组确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.
【详解】
解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:
解得:
答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.
(2)设装运乙、丙水果的车分别为a辆,b辆,得:
,
解得:
答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.
(3)设总利润为w千元,
w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.
∵
∴13≤m≤15.5,
∵m为正整数,
∴m=13,14,15,
在w=10m+1中,w随m的增大而增大,
∴当m=15时,W最大=366(千元),
答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.
【点睛】
此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值,需确定
自变量的取值范围.
20、C
【解析】
利用二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.
【详解】
根据题意得,
解得-3≤m≤1.
故选C.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
21、(1)证明见解析(2)-1
【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
【详解】
(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
在△ACF和△ABE中,
△ACF≌△ABE
BE=CF.
(2)∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=.
考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
22、 (1) 2﹣ ;(2)见解析
【解析】
分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;
(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.
详解:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵∠BAD=15°,
∴∠CAE=45°﹣15°=30°,
Rt△ACE中,CE=1,
∴AC=2CE=2,
Rt△CED中,∠ECD=90°﹣60°=30°,
∴CD=2ED,
设ED=x,则CD=2x,
∴CE=x,
∴x=1,
x=,
∴CD=2x=,
∴BD=BC﹣CD=AC﹣CD=2﹣;
(2)如图2,连接CM,
∵∠ACB=∠ECF=90°,
∴∠ACE=∠BCF,
∵AC=BC,CE=CF,
∴△ACE≌△BCF,
∴∠BFC=∠AEC=90°,
∵∠CFE=45°,
∴∠MFB=45°,
∵∠CFM=∠CBA=45°,
∴C、M、B、F四点共圆,
∴∠BCM=∠MFB=45°,
∴∠ACM=∠BCM=45°,
∵AC=BC,
∴AM=BM.
点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.
23、(1)60°;(2)见解析
【解析】
(1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;
(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;
【详解】
(1)如图,连接BD,
∵AD为圆O的直径,
∴∠ABD=90°,
∴BD=AD=3,
∵CD∥AB,∠ABD=90°,
∴∠CDB=∠ABD=90°,
在Rt△CDB中,tanC=,
∴∠C=60°;
(2)连接OB,
∵∠A=30°,OA=OB,
∴∠OBA=∠A=30°,
∵CD∥AB,∠C=60°,
∴∠ABC=180°﹣∠C=120°,
∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,
∴OB⊥BC,
∴BC为圆O的切线.
【点睛】
此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.
24、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
【解析】
试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
(2)先求出C的人数,再求出C的百分比即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
试题解析:(1)根据题意得: 15÷30%=50(名).
答;在这项调查中,共调查了50名学生;
(2)图如下:
(3)用A表示男生,B表示女生,画图如下:
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是.
陕西省西安市周至县重点达标名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份陕西省西安市周至县重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,下面的几何体中,主视图为圆的是等内容,欢迎下载使用。
陕西省西安市西北大附中2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份陕西省西安市西北大附中2021-2022学年中考数学考试模拟冲刺卷含解析,共18页。
2022届陕西省西安市庆安初级中学中考冲刺卷数学试题含解析: 这是一份2022届陕西省西安市庆安初级中学中考冲刺卷数学试题含解析,共19页。试卷主要包含了魏晋时期的数学家刘徽首创割圆术等内容,欢迎下载使用。