2022年甘肃省临夏州中考数学试卷(含解析)
展开2022年甘肃省临夏州中考数学试卷
题号 | 一 | 二 | 三 | 总分 |
得分 |
|
|
|
|
一、选择题(本大题共10小题,共30分)
- 的相反数是( )
A. B. C. D.
- 若,则的余角的大小是( )
A. B. C. D.
- 不等式的解集是( )
A. B. C. D.
- 用配方法解方程时,配方后正确的是( )
A. B. C. D.
- 若∽,,,则( )
A. B. C. D.
- 年月日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”其中,航天员们在轨驻留期间共完成项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是( )
A. 完成航天医学领域实验项数最多
B. 完成空间应用领域实验有项
C. 完成人因工程技术实验项数比空间应用领域实验项数多
D. 完成人因工程技术实验项数占空间科学实验总项数的
- 大自然中有许多小动物都是“小数学家”,如图,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图,一个巢房的横截面为正六边形,若对角线的长约为,则正六边形的边长为( )
A. B. C. D.
- 九章算术是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,天到北海;大雁从北海起飞,天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过天相遇,根据题意可列方程为( )
A. B. C. D.
- 如图,一条公路公路的宽度忽略不计的转弯处是一段圆弧,点是这段弧所在圆的圆心,半径,圆心角,则这段弯路的长度为( )
A.
B.
C.
D.
- 如图,在菱形中,,动点从点出发,沿折线方向匀速运动,运动到点停止.设点的运动路程为,的面积为,与的函数图象如图所示,则的长为( )
A. B. C. D.
二、填空题(本大题共8小题,共24分)
- 计算:______.
- 因式分解______.
- 若一次函数的函数值随着自变量值的增大而增大,则______写出一个满足条件的值.
- 如图,菱形中,对角线与相交于点,若,,则的长为______.
- 如图,是四边形的外接圆,若,则______
- 如图,在四边形中,,,在不添加任何辅助线的前提下,要想四边形成为一个矩形,只需添加的一个条件是______.
- 如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度单位:与飞行时间单位:之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间______
- 如图,在矩形中,,,点,分别在边,上,,,交于点,若是的中点,则的长为______.
三、解答题(本大题共10小题,共66分)
- 计算:.
- 化简:.
- 中国清朝末期的几何作图教科书最新中学教科书用器画由国人自编图,书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:
原文 | 释义 |
甲乙丙为定直角. | 如图,为直角, |
根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题保留作图痕迹,不写作法;
根据完成的图,直接写出,,的大小关系.
- 灞陵桥位于甘肃省渭源县城南清源河渭河上游上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥图,该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:
方案设计:如图,点为桥拱梁顶部最高点,在地面上选取,两处分别测得和的度数在同一条直线上,河边处测得地面到水面的距离在同一条直线上,,,.
数据收集:实地测量地面上,两点的距离为,地面到水面的距离,,.
问题解决:求灞陵桥拱梁顶部到水面的距离结果保留一位小数.
参考数据:,,,,,.
根据上述方案及数据,请你完成求解过程.
- 第届冬季奥林匹克运动会于年月至日在我国北京张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:云顶滑雪公园、国家跳台滑雪中心、国家越野滑雪中心、国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.
小明被分配到国家冬季两项中心场馆做志愿者的概率是多少?
利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率. - 受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了名学生周累计居家锻炼时间单位:的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:
【数据收集】
【数据整理】
将收集的个数据按,,,,五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图说明:,,,,,其中表示锻炼时间;
【数据分析】
统计量 | 平均数 | 众数 | 中位数 |
锻炼时间 |
请根据以上信息解答下列问题:
填空:______;
补全频数分布直方图;
如果学校将管理目标确定为每周不少于,该校有名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.
- 如图,,是反比例函数在第一象限图象上的点,过点的直线与轴交于点,轴,垂足为,与交于点,,.
求此反比例函数的表达式;
求的面积.
- 如图,内接于,,是的直径,是延长线上一点,且.
求证:是的切线;
若,,求线段的长.
- 已知正方形,为对角线上一点.
【建立模型】
如图,连接,求证:;
【模型应用】
如图,是延长线上一点,,交于点.
判断的形状并说明理由;
若为的中点,且,求的长.
【模型迁移】
如图,是延长线上一点,,交于点,求证:.
- 如图,在平面直角坐标系中,抛物线与轴交于,两点,点在轴上,且,,分别是线段,上的动点点,不与点,,重合.
求此抛物线的表达式;
连接并延长交抛物线于点,当轴,且时,求的长;
连接.
如图,将沿轴翻折得到,当点在抛物线上时,求点的坐标;
如图,连接,当时,求的最小值.
答案和解析
1.【答案】
【解析】
【解答】
解:根据相反数的含义,可得
的相反数是:.
故选:.
【分析】
根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“”,据此解答即可.
此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“”.
2.【答案】
【解析】解:,
的余角为:,
故选:.
根据互余两角之和为计算即可.
本题考查的是余角的定义,如果两个角的和等于,就说这两个角互为余角.
3.【答案】
【解析】解:,
移项得:,
合并同类项得:,
系数化为得:.
故选:.
按照解一元一次不等式的步骤:去分母;去括号;移项;合并同类项;化系数为即可得出答案.
本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:去分母;去括号;移项;合并同类项;化系数为是解题的关键.
4.【答案】
【解析】解:,
,即.
故选:.
方程左右两边都加上,左边化为完全平方式,右边合并即可得到结果.
本题考查了解一元二次方程配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.
5.【答案】
【解析】解:∽,
,
,,
,
故选:.
根据∽,可以得到,然后根据,,即可得到的值.
本题考查相似三角形的性质,解答本题的关键是明确题意,利用相似三角形的性质解答.
6.【答案】
【解析】解:由扇形统计图可得,完成航天医学领域实验项数最多,所以选项说法正确,故A选项不符合题意;
B.由扇形统计图可得,完成空间应用领域实验占完成总实验数的,不能算出完成空间应用领域的实验次数,所以选项说法错误,故B选项符合题意;
C.完成人因工程技术实验占完成总实验数的,完成空间应用领域实验占完成总实验数的,所以完成人因工程技术实验项数比空间应用领域实验项数多说法正确,故C选项不符合题意;
D.完成人因工程技术实验项数占空间科学实验总项数的,所以选项说法正确,故D选项不符合题意.
故选:.
应用扇形统计图用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数单位,用圆的扇形面积表示各部分占总数的百分数.进行判定即可得出答案.
本题主要考查了扇形统计图,熟练掌握扇形统计图的应用是解决本题的关键.
7.【答案】
【解析】解:连接,,、交于点,如右图所示,
六边形是正六边形,的长约为,
,,和约为,
约为,
故选:.
根据正六边形的性质和题目中的数据,可以求得正六边形的边长.
本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.
8.【答案】
【解析】解:设经过天相遇,
根据题意得:,
,
故选:.
设总路程为,野鸭每天飞,大雁每天飞,当相遇的时候,根据野鸭的路程大雁的路程总路程即可得出答案.
本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程大雁的路程总路程列出方程是解题的关键.
9.【答案】
【解析】解:半径,圆心角,
这段弯路的长度为:,
故选:.
根据题目中的数据和弧长公式,可以计算出这段弯路的长度.
本题考查圆心角、弧、弦的关系,解答本题的关键是明确弧长计算公式.
10.【答案】
【解析】解:在菱形中,,
为等边三角形,
设,由图可知,的面积为,
的面积,
解得:,
故选:.
根据图和图判定三角形为等边三角形,它的面积为解答即可.
本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.
11.【答案】
【解析】解:原式
.
故答案为:.
根据同底数幂的乘法法则化简即可
本题考查了同底数幂的乘法,掌握是解题的关键.
12.【答案】
【解析】解:原式,
故答案为:
原式提取,再利用平方差公式分解即可.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
13.【答案】答案不唯一
【解析】解:函数值随着自变量值的增大而增大,
,
答案不唯一.
故答案为:答案不唯一.
根据函数值随着自变量值的增大而增大得到,写出一个正数即可.
本题考查了一次函数的性质,掌握一次函数的性质:,随的增大而增大;,随的增大而减小是解题的关键.
14.【答案】
【解析】解:四边形是菱形,,
,,,
,
,
,
,
故答案为:.
由菱形的性质可得,,由勾股定理可求,即可求解.
本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.
15.【答案】
【解析】解:四边形内接于,,
,
故答案为:.
根据圆内接四边形的对角互补即可得到结论.
本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.
16.【答案】答案不唯一
【解析】解:需添加的一个条件是,理由如下:
,,
四边形是平行四边形,
又,
平行四边形是矩形,
故答案为:答案不唯一.
先证四边形是平行四边形,再由矩形的判定即可得出结论.
本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.
17.【答案】
【解析】解:,
且,
当时,取最大值,
故答案为:.
把一般式化为顶点式,即可得到答案.
本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.
18.【答案】
【解析】解:四边形是矩形,
,,,
,
,
,
是的中点,
,
,
,
∽,
,
,
,
,
,
故答案为:.
根据矩形的性质可得,,,从而可得,然后利用直角三角形斜边上的中线可得,从而可得,进而可得,再证明∽,利用相似三角形的性质可求出的长,最后在中,利用勾股定理求出的长,即可解答.
本题考查了相似三角形的判定与性质,勾股定理,矩形的性质,直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线,以及相似三角形的判定与性质是解题的关键.
19.【答案】解:原式
.
【解析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.
本题考查了二次根式的混合运算,掌握是解题的关键.
20.【答案】解:原式
.
【解析】将除法转化为乘法,因式分解,约分,根据分式的加减法法则化简即可得出答案.
本题考查了分式的混合运算,考查学生运算能力,掌握运算的结果要化成最简分式或整式是解题的关键.
21.【答案】解:如图,射线,即为所求.
.
理由:连接,,
则,,
即和均为等边三角形,
,
,
.
【解析】按题干直接画图即可.
连接,,可得和均为等边三角形,则,进而可得.
本题考查尺规作图,根据题意正确作出图形是解题的关键.
22.【答案】解:设,
由题意得:
,
在中,,
,
,
,
在中,,
,
,
经检验:是原方程的根,
,
灞陵桥拱梁顶部到水面的距离约为.
【解析】设,根据题意可得:,然后在中,利用锐角三角函数的定义求出的长,再在中,利用锐角三角函数的定义列出关于的方程,进行计算即可解答.
本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.
23.【答案】解:小明被分配到国家冬季两项中心场馆做志愿者的概率是;
画树状图如下:
共有种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有种,
小明和小颖被分配到同一场馆做志愿者的概率为.
【解析】直接由概率公式求解即可;
画树状图,共有种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有种,再由概率公式求解即可.
此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
24.【答案】
【解析】解:由数据可知,出现的次数最多,
.
故答案为:.
补全频数分布直方图如下:
名.
答:估计有名学生能完成目标.
目标合理.
理由:过半的学生都能完成目标.
由众数的定义可得出答案.
结合收集的数据,求出组的人数,即可补全频数分布直方图.
用总人数乘以样本中每周不少于的人数占比,即可得出答案;过半的学生都能完成目标,即目标合理.
本题考查频数分布直方图、用样本估计总体,从收集的数据中获取必要的信息是解决问题的关键.
25.【答案】解:当时,即,
,
即直线与轴交于点的坐标为,
,
又,
点的坐标为,
而点在反比例函数的图象上,
,
反比例函数的图象为;
方程组的正数解为,
点的坐标为,
当时,,
点的坐标为,即,
,
,
答:的面积为.
【解析】根据直线求出点坐标,进而确定,的值,再确定点的坐标,代入反比例函数的关系式即可;
求出点坐标,进而求出,再求出一次函数与反比例函数在第一象限的交点的坐标,由三角形的面积的计算方法进行计算即可.
本题考查反比例函数、一次函数交点坐标以及待定系数法求函数关系式,将一次函数、反比例函数的关系式联立方程组是求出交点坐标的基本方法,将点的坐标转化为线段的长是正确解答的关键.
26.【答案】证明:是的直径,
,
,
,
,
又,
,
,
,
是的半径,
是的切线;
解:由知,,
在和中,
,,
,
即,
,
在中,,,
,
解得,
即线段的长为.
【解析】根据直径所对的圆周角是,得出,根据圆周角定理得出,推出即可得出结论;
根据得出,再根据勾股定理得出即可.
本题主要考查圆的综合题,熟练掌握圆周角定理,切线的判定,勾股定理等知识是解题的关键.
27.【答案】证明:是正方形的对角线,
,,
,
≌,
;
解:为等腰三角形,理由:
四边形是正方形,
,
,
由知,≌,
,
,
,
,
,
,
,
,
是等腰三角形;
如图,过点作于,
四边形为正方形,点为的中点,,
,,
由知,,
,
,
在与中,,
,
,
,
在中,;
,
,
在中,,
,
由知,,
由知,,
.
【解析】先判断出,,进而判断出≌,即可得出结论;
先判断出,进而判断出,即可得出结论;
过点作于,先求出,,进而求出,进而求出,最后用勾股定理即可求出答案;
先判断出,由知,,由知,,即可判断出结论.
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,作出辅助线构造出直角三角形是解的关键.
28.【答案】解:抛物线与轴交于,两点,
,
解得,
,
即抛物线的表达式为;
在中,令,得或,
,,
,
,
,
,,
,
轴,
,
,
,
;
如下图,连接交于点,
与关于轴对称,
,,
设,则,
,
,
点在抛物线上,
,
解得或舍去,
;
如下图,在的下方作,且,连接,,
,
≌,
,
当、、三点共线时,最小,最小为,
过点作,垂足为,
,,
,,
,
,,
,
,
即的最小值为.
【解析】用待定系数法求解析式即可;
根据函数解析式求出的长度,根据三角函数求出的长度,根据点的坐标得出的长度,根据得出结论即可;
连接交于点,设,则,得出,根据点在抛物线上得出的值,即可得出点的坐标;
在的下方作,且,连接,,构造≌,得出当、、三点共线时,最小,最小为,求出的值即可.
本题主要考查二次函数的综合题,熟练掌握二次函数的图象和性质,全等三角形的判定和性质,三角函数,勾股定理等知识是解题的关键.
2024年甘肃省临夏州中考数学试卷: 这是一份2024年甘肃省临夏州中考数学试卷,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省临夏州中考数学试卷【含详细解析】: 这是一份2024年甘肃省临夏州中考数学试卷【含详细解析】,共24页。
2024年甘肃省临夏州中考数学试卷: 这是一份2024年甘肃省临夏州中考数学试卷,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。