2021-2022学年江苏省盐城市南洋中学中考四模数学试题含解析
展开
这是一份2021-2022学年江苏省盐城市南洋中学中考四模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.cos60°的值等于( )
A.1 B. C. D.
2.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为( )
A.8064 B.8067 C.8068 D.8072
3.计算的结果是( )
A.1 B.﹣1 C.1﹣x D.
4.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A. B. C. D.
5.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )
A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×1014
6.下列计算正确的是( )
A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a
7.某青年排球队12名队员年龄情况如下:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这12名队员年龄的众数、中位数分别是( )
A.20,19 B.19,19 C.19,20.5 D.19,20
8.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
9.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为( )
A.4 B.2 C.2 D.
10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:
①年用水量不超过180m1的该市居民家庭按第一档水价交费;
②年用水量不超过240m1的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150~180m1之间;
④该市居民家庭年用水量的众数约为110m1.
其中合理的是( )
A.①③ B.①④ C.②③ D.②④
11.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
A. B.
C. D.
12.估计的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____
14.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.
15.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.
16.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.
17.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
18.计算﹣的结果为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.
20.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
21.(6分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
22.(8分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.
23.(8分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
24.(10分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?
25.(10分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
26.(12分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,
n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.
(1) 若m=-8,n =4,直接写出E、F的坐标;
(2) 若直线EF的解析式为,求k的值;
(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.
27.(12分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.
求证:PE⊥PF.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据特殊角的三角函数值直接得出结果.
【详解】
解:cos60°=
故选A.
【点睛】
识记特殊角的三角函数值是解题的关键.
2、C
【解析】
分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.
详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.
如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.
故选C.
点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.
3、B
【解析】
根据同分母分式的加减运算法则计算可得.
【详解】
解:原式=
=
=
=-1,
故选B.
【点睛】
本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.
4、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
5、B
【解析】
由科学记数法的定义可得答案.
【详解】
解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,
故选B.
【点睛】
科学记数法表示数的标准形式为 (<10且n为整数).
6、D
【解析】
根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.
【详解】
解:A.x4•x4=x4+4=x8≠x16,故该选项错误;
B.(a3)2=a3×2=a6≠a5,故该选项错误;
C.(ab2)3=a3b6≠ab6,故该选项错误;
D.a+2a=(1+2)a=3a,故该选项正确;
故选D.
考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.
7、D
【解析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】
这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
8、D
【解析】
试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
9、A
【解析】
【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.
【详解】作BD⊥AC于D,如图,
∵△ABC为等腰直角三角形,
∴AC=AB=2,
∴BD=AD=CD=,
∵AC⊥x轴,
∴C(,2),
把C(,2)代入y=得k=×2=4,
故选A.
【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.
10、B
【解析】
利用条形统计图结合中位数和中位数的定义分别分析得出答案.
【详解】
①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;
②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),
∴×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;
③∵5万个数据的中间是第25000和25001的平均数,
∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;
④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,
故选B.
【点睛】
此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.
11、D
【解析】
试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
∴△≥0,
∴4﹣4(k+1)≥0,
解得k≤0,
∵x1+x2=﹣2,x1•x2=k+1,
∴﹣2﹣(k+1)<﹣1,
解得k>﹣2,
不等式组的解集为﹣2<k≤0,
在数轴上表示为:
,
故选D.
点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
12、D
【解析】
寻找小于26的最大平方数和大于26的最小平方数即可.
【详解】
解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:
,故选择D.
【点睛】
本题考查了二次根式的相关定义.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、115°
【解析】
根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到结论.
【详解】
∵∠ABC=50°,
∴∠BAC+∠ACB=130°,
∵若M在PA的中垂线上,N在PC的中垂线上,
∴AM=PM,PN=CN,
∴∠MAP=∠APM,∠CPN=∠PCN,
∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,
∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,
∴∠APC=115°,
故答案为:115°
【点睛】
本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.
14、10π
【解析】
解:根据圆锥的侧面积公式可得这个圆锥的侧面积=•1π•4•5=10π(cm1).
故答案为:10π
【点睛】
本题考查圆锥的计算.
15、
【解析】
设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.
【详解】
如图所示:
该船行驶的速度为x海里/时,
3小时后到达小岛的北偏西45°的C处,
由题意得:AB=80海里,BC=3x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°−60°=30°,
∴AQ=AB=40,BQ=AQ=40,
在直角三角形AQC中,∠CAQ=45°,
∴CQ=AQ=40,
∴BC=40+40=3x,
解得:x=.
即该船行驶的速度为海里/时;
故答案为:.
【点睛】
本题考查的是解直角三角形,熟练掌握方向角是解题的关键.
16、3×1
【解析】
因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:
600×50=30 000,用科学记数法表示为3×1立方米.
故答案为3×1.
17、5.2
【解析】
分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
∴方差为:.
点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
18、.
【解析】
根据同分母分式加减运算法则化简即可.
【详解】
原式=,
故答案为.
【点睛】
本题考查了分式的加减运算,熟记运算法则是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y;(2)yx+1.
【解析】
(1)把A的坐标代入反比例函数的解析式即可求得;
(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.
【详解】
(1)由题意得:k=xy=2×3=6,
∴反比例函数的解析式为y;
(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),
∵反比例函数y的图象经过点B(a,b),
∴b,
∴AD=3,
∴S△ABCBC•ADa(3)=6,
解得a=6,
∴b1,
∴B(6,1),
设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得
,解得:,
所以直线AB的解析式为yx+1.
【点睛】
本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键.
20、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
【解析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
【详解】
解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
解得 k≥﹣2.
∵k为负整数,
∴k=﹣2,﹣2.
(2)当k=﹣2时,不符合题意,舍去;
当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
【点睛】
本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
21、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
【解析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;
(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
【详解】
(1)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=25,x2=35,
答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
∵a=﹣2,
∴抛物线开口向下,当x<30时,y随x的增大而增大,
又由于这种农产品的销售价不高于每千克28元
∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
【点睛】
此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
22、BD= 2.
【解析】
试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.
试题解析:
∵∠ACD=∠ABC,
又∵∠A=∠A,
∴△ABC∽△ACD ,
∴,
∵AC=,AD=1,
∴,
∴AB=3,
∴BD= AB﹣AD=3﹣1=2 .
点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.
23、(1)证明见解析;(2)BC=;.
【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.
(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.
(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=∠CAB.
∵∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)解:过点C作CG⊥AB于G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2,
在Rt△ABE中,由勾股定理得AE==2,
∴sin∠2===,cos∠2===,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴=.
∴BF==.
24、(1)政府这个月为他承担的总差价为644元;
(2)当销售单价定为34元时,每月可获得最大利润144元;
(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
【解析】
试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;
(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;
(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.
试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,
344×(12﹣14)=344×2=644元,
即政府这个月为他承担的总差价为644元;
(2)依题意得,w=(x﹣14)(﹣14x+544)
=﹣14x2+644x﹣5444
=﹣14(x﹣34)2+144
∵a=﹣14<4,∴当x=34时,w有最大值144元.
即当销售单价定为34元时,每月可获得最大利润144元;
(3)由题意得:﹣14x2+644x﹣5444=2,
解得:x1=24,x2=1.
∵a=﹣14<4,抛物线开口向下,
∴结合图象可知:当24≤x≤1时,w≥2.
又∵x≤25,
∴当24≤x≤25时,w≥2.
设政府每个月为他承担的总差价为p元,
∴p=(12﹣14)×(﹣14x+544)
=﹣24x+3.
∵k=﹣24<4.
∴p随x的增大而减小,
∴当x=25时,p有最小值544元.
即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.
考点:二次函数的应用.
25、2+1
【解析】
根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.
【详解】
原式=-1+3+
= -1+3+
=2+1.
【点睛】
本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.
26、(1)E(-3,4)、F(-5,0);(2);(3).
【解析】
(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.
(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF为菱形,令y=0,则,解得 , 根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得 则CE=,在Rt△COE中, 根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;
(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2
即可求出tan∠EFO=.
【详解】
解:(1)如图:连接OE,BF,
E(-3,4)、F(-5,0)
(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE
可证:△BGE≌△OGF(ASA)
∴BE=OF
∴四边形OEBF为菱形
令y=0,则,解得 ,∴OF=OE=BE=BF=
令y=n,则,解得 ∴CE=
在Rt△COE中,,
解得
∴E()
∴
(3) 设EB=EO=x,则CE=-m-x,
在Rt△COE中,(-m-x)2+n2=x2,解得
∴E()、F()
∴EF的中点为()
将E()、()代入中,得
,得m2=2n2
∴tan∠EFO=
【点睛】
考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.
27、证明见解析.
【解析】
由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.
【详解】
∵四边形内接于圆,
∴,
∵平分,
∴,
∵,,
∴,
∴,
∵平分,
∴.
【点睛】
此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.
相关试卷
这是一份《2023年江苏省盐城市南洋中考数学适应性模拟试题含解析及点睛》,共23页。
这是一份江苏省盐城市东台盐都2021-2022学年中考冲刺卷数学试题含解析,共17页。
这是一份江苏省盐城市大丰重点中学2021-2022学年中考适应性考试数学试题含解析,共18页。