终身会员
搜索
    上传资料 赚现金

    2021-2022学年江苏省南京江北新区七校联考中考数学考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    2021-2022学年江苏省南京江北新区七校联考中考数学考试模拟冲刺卷含解析第1页
    2021-2022学年江苏省南京江北新区七校联考中考数学考试模拟冲刺卷含解析第2页
    2021-2022学年江苏省南京江北新区七校联考中考数学考试模拟冲刺卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省南京江北新区七校联考中考数学考试模拟冲刺卷含解析

    展开

    这是一份2021-2022学年江苏省南京江北新区七校联考中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了如图,在中,等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米

    A. B. C.+1 D.3
    2.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(     )

    A.16cm B.18cm C.20cm D.21cm
    3.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
    A.8或10 B.8 C.10 D.6或12
    4.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )

    A.M B.N C.P D.Q
    5.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
    A. B. C. D.
    6.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是( )

    A.4 B.3 C.2 D.1
    7.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )

    A.∠BCB′=∠ACA′ B.∠ACB=2∠B
    C.∠B′CA=∠B′AC D.B′C 平分∠BB′A′
    8.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
    A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
    9.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为(  )
    A.0.72×106平方米 B.7.2×106平方米
    C.72×104平方米 D.7.2×105平方米
    10.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为(  )
    A.780×105 B.78×106 C.7.8×107 D.0.78×108
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.关于的一元二次方程有两个相等的实数根,则________.
    12.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.

    13.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    14.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.

    15.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为_________.

    16.若有意义,则x 的取值范围是 .
    三、解答题(共8题,共72分)
    17.(8分)如图,已知:,,,求证:.

    18.(8分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H
    (1)观察猜想
    如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是   ;∠AHB=   .
    (2)探究证明
    如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.
    (3)拓展延伸
    在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离.

    19.(8分)先化简,,其中x=.
    20.(8分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.

    21.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
    求证:BF=AG.

    22.(10分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)

    23.(12分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.

    24.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
    (1)求证:EF是⊙O的切线.
    (2)如果⊙O的半径为5,sin∠ADE=,求BF的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    由题意可知,AC=1,AB=2,∠CAB=90°
    据勾股定理则BC=m;
    ∴AC+BC=(1+)m.
    答:树高为(1+)米.
    故选C.
    2、C
    【解析】
    试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
    考点:平移的性质.
    3、C
    【解析】
    试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
    ②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
    综上所述,它的周长是4.故选C.
    考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
    4、A
    【解析】
    解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
    点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
    5、D
    【解析】
    A选项:

    ∠1+∠2=360°-90°×2=180°;
    B选项:

    ∵∠2+∠3=90°,∠3+∠4=90°,
    ∴∠2=∠4,
    ∵∠1+∠4=180°,
    ∴∠1+∠2=180°;
    C选项:

    ∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
    ∵∠1+∠EFC=180°,∴∠1+∠2=180°;
    D选项:∠1和∠2不一定互补.
    故选D.
    点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
    6、C
    【解析】
    用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.
    【详解】
    解:由题意知,△ABC是等腰直角三角形,
    设AB=BC=2,则AC=2,
    ∵点D是AB的中点,
    ∴AD=BD=1,
    在Rt△DBC中,DC=,(勾股定理)
    ∵BG⊥CD,
    ∴∠DEB=∠ABC=90°,
    又∵∠CDB=∠BDE,
    ∴△CDB∽△BDE,
    ∴∠DBE=∠DCB, ,即
    ∴DE= ,BE=,
    在△GAB和△DBC中,
    ∴△GAB≌△DBC(ASA)
    ∴AG=DB=1,BG=CD=,
    ∵∠GAB+∠ABC=180°,
    ∴AG∥BC,
    ∴△AGF∽△CBF,
    ∴,且有AB=BC,故①正确,
    ∵GB=,AC=2,
    ∴AF==,故③正确,
    GF=,FE=BG﹣GF﹣BE=,故②错误,
    S△ABC=AB•AC=2,S△BDF=BF•DE=××=,故④正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.
    7、C
    【解析】
    根据旋转的性质求解即可.
    【详解】
    解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;
    B:,,

    ,

    ,故B正确;
    D:,
    B′C平分∠BB′A′,故D正确.
    无法得出C中结论,
    故答案:C.
    【点睛】
    本题主要考查三角形旋转后具有的性质,注意灵活运用各条件
    8、B
    【解析】
    试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
    9、D
    【解析】
    试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
    ∴此题可记为1.2×105平方米.
    考点:科学记数法
    10、C
    【解析】
    科学记数法记数时,主要是准确把握标准形式a×10n即可.
    【详解】
    解:78000000= 7.8×107.
    故选C.
    【点睛】
    科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-1.
    【解析】
    根据根的判别式计算即可.
    【详解】
    解:依题意得:
    ∵关于的一元二次方程有两个相等的实数根,
    ∴= =4-41(-k)=4+4k=0
    解得,k=-1.
    故答案为:-1.
    【点睛】
    本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
    12、1
    【解析】
    如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
    【详解】
    如图作点D关于BC的对称点D′,连接PD′,ED′,
    在Rt△EDD′中,∵DE=6,DD′=1,
    ∴ED′==10,
    ∵DP=PD′,
    ∴PD+PF=PD′+PF,
    ∵EF=EA=2是定值,
    ∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
    ∴PF+PD的最小值为1,
    故答案为1.

    【点睛】
    本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.
    13、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    【点睛】
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    14、(4,).
    【解析】
    由于函数y=(x>0常数k>0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.
    【详解】
    ∵函数y=(x>0、常数k>0)的图象经过点A(1,1),
    ∴把(1,1)代入解析式得到1=,
    ∴k=1,
    设B点的横坐标是m,
    则AC边上的高是(m-1),
    ∵AC=1
    ∴根据三角形的面积公式得到×1•(m-1)=3,
    ∴m=4,把m=4代入y=,
    ∴B的纵坐标是,
    ∴点B的坐标是(4,).
    故答案为(4,).
    【点睛】
    解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.
    15、
    【解析】
    DE∥BC


    16、x≥8
    【解析】


    三、解答题(共8题,共72分)
    17、证明见解析;
    【解析】
    根据HL定理证明Rt△ABC≌Rt△DEF,根据全等三角形的性质证明即可.
    【详解】
    ,BE为公共线段,
    ∴CE+BE=BF+BE,

    又,
    在与中,


    ∴AC=DF.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    18、(1),45°;(2)不成立,理由见解析;(3) .
    【解析】
    (1)由正方形的性质,可得 ,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性质得到,∠CAB==45°,又因为∠CBA=90°,所以∠AHB=45°.
    (2)由矩形的性质,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性质可得∠CAE=∠CBF,,则∠CAB=60°,又因为∠CBA=90°,
    求得∠AHB=30°,故不成立.
    (3)分两种情况讨论:①作BM⊥AE于M,因为A、E、F三点共线,及∠AFB=30°,∠AFC=90°,进而求得AC和EF ,根据勾股定理求得AF,则AE=AF﹣EF,再由(2)得: ,所以BF=3﹣3,故BM= .
    ②如图3所示:作BM⊥AE于M,由A、E、F三点共线,得:AE=6+2,BF=3+3,则BM=.
    【详解】
    解:(1)如图1所示:∵四边形ABCD和EFCG均为正方形,
    ∴ ,∠ACB=∠GEC=45°,
    ∴∠ACE=∠BCF,
    ∴△CAE∽△CBF,
    ∴∠CAE=∠CBF,,
    ∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,
    ∵∠CBA=90°,
    ∴∠AHB=180°﹣90°﹣45°=45°,
    故答案为,45°;
    (2)不成立;理由如下:
    ∵四边形ABCD和EFCG均为矩形,且∠ACB=∠ECF=30°,
    ∴,∠ACE=∠BCF,
    ∴△CAE∽△CBF,
    ∴∠CAE=∠CBF,,
    ∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,
    ∵∠CBA=90°,
    ∴∠AHB=180°﹣90°﹣60°=30°;
    (3)分两种情况:
    ①如图2所示:作BM⊥AE于M,当A、E、F三点共线时,
    由(2)得:∠AFB=30°,∠AFC=90°,
    在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,
    ∴AC=,EF=CF×tan30°=6× =2 ,
    在Rt△ACF中,AF= ,
    ∴AE=AF﹣EF=6 ﹣2,
    由(2)得: ,
    ∴BF= (6﹣2)=3﹣3,
    在△BFM中,∵∠AFB=30°,
    ∴BM=BF= ;
    ②如图3所示:作BM⊥AE于M,当A、E、F三点共线时,
    同(2)得:AE=6+2,BF=3+3,
    则BM=BF=;
    综上所述,当A、E、F三点共线时,点B到直线AE的距离为.

    【点睛】
    本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.
    19、
    【解析】
    根据分式的化简方法先通分再约分,然后带入求值.
    【详解】
    解:

    当时,.
    【点睛】
    此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.
    20、原计划每天安装100个座位.
    【解析】
    根据题意先设原计划每天安装x个座位,列出方程再求解.
    【详解】
    解:设原计划每天安装个座位,采用新技术后每天安装个座位,
    由题意得:.
    解得:.
    经检验:是原方程的解.
    答:原计划每天安装100个座位.
    【点睛】
    此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.
    21、见解析
    【解析】
    根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
    【详解】
    证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
    又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
    又∵∠BAC=90°,AE⊥CD,
    ∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
    ∴∠BAF=∠ACG. 又∵AB=CA,

    ∴△ABF≌△CAG(ASA),
    ∴BF=AG
    【点睛】
    此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
    22、 (10-4)米
    【解析】
    延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.
    【详解】
    解:如图,延长OC,AB交于点P.
    ∵∠ABC=120°,
    ∴∠PBC=60°,
    ∵∠OCB=∠A=90°,
    ∴∠P=30°,
    ∵AD=20米,
    ∴OA=AD=10米,
    ∵BC=2米,
    ∴在Rt△CPB中,PC=BC•tan60°=米,PB=2BC=4米,
    ∵∠P=∠P,∠PCB=∠A=90°,
    ∴△PCB∽△PAO,
    ∴,
    ∴PA===米,
    ∴AB=PA﹣PB=()米.
    答:路灯的灯柱AB高应该设计为()米.

    23、证明见解析.
    【解析】
    (1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
    (2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
    【详解】
    (1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
    ∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
    ∵AB⊥EC,
    ∴∠ABC=90°,
    ∴∠DBE=∠CBE=30°,
    在△BDE和△BCE中,
    ∵,
    ∴△BDE≌△BCE;
    (2)四边形ABED为菱形;
    由(1)得△BDE≌△BCE,
    ∵△BAD是由△BEC旋转而得,
    ∴△BAD≌△BEC,
    ∴BA=BE,AD=EC=ED,
    又∵BE=CE,
    ∴BA=BE=ED= AD
    ∴四边形ABED为菱形.
    考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
    24、(1)答案见解析;(2).
    【解析】
    试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
    (2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.
    试题解析:(1)证明:连结OD

    ∵OD=OB∴∠ODB=∠DBO
    又AB=AC
    ∴∠DBO=∠C
    ∴∠ODB =∠C
    ∴OD ∥AC
    又DE⊥AC
    ∴DE ⊥OD
    ∴EF是⊙O的切线.
    (2)∵AB是直径
    ∴∠ADB=90 °
    ∴∠ADC=90 °
    即∠1+∠2=90 °又∠C+∠2=90 °
    ∴∠1=∠C
    ∴∠1 =∠3


    ∴AD=8
    在Rt△ADB中,AB=10∴BD=6
    在又Rt△AED中,

    设BF=x
    ∵OD ∥AE
    ∴△ODF∽△AEF
    ∴ ,即,
    解得:x=

    相关试卷

    江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,定义运算“※”为,《语文课程标准》规定等内容,欢迎下载使用。

    2022年江苏省南京市江北新区重点名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年江苏省南京市江北新区重点名校中考数学考试模拟冲刺卷含解析,共21页。

    2022届江苏省南京江北新区七校联考中考三模数学试题含解析:

    这是一份2022届江苏省南京江北新区七校联考中考三模数学试题含解析,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map