终身会员
搜索
    上传资料 赚现金

    2021-2022学年江苏省高邮市朝阳中学中考适应性考试数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年江苏省高邮市朝阳中学中考适应性考试数学试题含解析第1页
    2021-2022学年江苏省高邮市朝阳中学中考适应性考试数学试题含解析第2页
    2021-2022学年江苏省高邮市朝阳中学中考适应性考试数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省高邮市朝阳中学中考适应性考试数学试题含解析

    展开

    这是一份2021-2022学年江苏省高邮市朝阳中学中考适应性考试数学试题含解析,共22页。试卷主要包含了答题时请按要求用笔,计算等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是某个几何体的展开图,该几何体是( )

    A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
    2.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )

    A.32° B.30° C.38° D.58°
    3.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )

    A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
    4.下列四个多项式,能因式分解的是(  )
    A.a-1 B.a2+1
    C.x2-4y D.x2-6x+9
    5.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为(  )元.
    A.+4 B.﹣9 C.﹣4 D.+9
    6.下列四个图形中,是中心对称图形的是( )
    A. B. C. D.
    7.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是(  )
    A.5 B.﹣2 C.2 D.﹣1
    8.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是( )
    A.相离 B.相切 C.相交 D.不确定
    9.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为(  )

    A.2 B.2 C. D.4
    10.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )

    A. B. C. D.
    11.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )

    A.68° B.20° C.28° D.22°
    12.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )
    A.(5,5) B.(5,4) C.(6,4) D.(6,5)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知△ABC中,∠C=90°,AB=9,,把△ABC 绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____.
    14.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.

    15.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.

    16.若,则= .
    17.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
    18.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
    “读书节“活动计划书
    书本类别
    科普类
    文学类
    进价(单位:元)
    18
    12
    备注
    (1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;

    (1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
    20.(6分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.
    21.(6分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.
    (1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.
    (2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?

    22.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
    (1)求证:方程有两个不相等的实数根;
    (2)当方程有一个根为1时,求k的值.
    23.(8分)列方程解应用题:
    为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
    信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
    信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
    根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
    24.(10分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).
    (1)t为何值时,△APQ与△AOB相似?
    (2)当 t为何值时,△APQ的面积为8cm2?

    25.(10分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H
    (1)观察猜想
    如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是   ;∠AHB=   .
    (2)探究证明
    如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.
    (3)拓展延伸
    在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离.

    26.(12分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
    (1)求证:CF是⊙O的切线;
    (2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)

    27.(12分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
    【详解】
    解:观察图形可知,这个几何体是三棱柱.
    故选A.
    【点睛】
    本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
    2、A
    【解析】
    根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
    【详解】
    解:∵∠B=58°,
    ∴∠AOC=116°,
    ∵OA=OC,
    ∴∠C=∠OAC=32°,
    故选:A.
    【点睛】
    此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
    3、C
    【解析】
    根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
    【详解】
    ∵|a|>|c|>|b|,
    ∴点A到原点的距离最大,点C其次,点B最小,
    又∵AB=BC,
    ∴原点O的位置是在点B、C之间且靠近点B的地方.
    故选:C.
    【点睛】
    此题考查了实数与数轴,理解绝对值的定义是解题的关键.
    4、D
    【解析】
    试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
    试题解析:x2-6x+9=(x-3)2.
    故选D.
    考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
    5、B
    【解析】
    收入和支出是两个相反的概念,故两个数字分别为正数和负数.
    【详解】
    收入13元记为+13元,那么支出9元记作-9元
    【点睛】
    本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.
    6、D
    【解析】
    试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.
    解:A、不是中心对称图形,故本选项错误;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、是中心对称图形,故本选项正确;
    故选D.
    考点:中心对称图形.
    7、A
    【解析】
    试题分析:原式=1-(-3)+=1+3+1=5,故选A.
    8、A
    【解析】
    根据角平分线的性质和点与直线的位置关系解答即可.
    【详解】
    解:如图所示;

    ∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,
    ∴以点P为圆心的圆与直线CD相离,
    故选:A.
    【点睛】
    此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.
    9、B
    【解析】
    分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.
    详解:
    如图所示,连接OC、OB

    ∵多边形ABCDEF是正六边形,
    ∴∠BOC=60°,
    ∵OC=OB,
    ∴△BOC是等边三角形,
    ∴∠OBM=60°,
    ∴OM=OBsin∠OBM=4×=2.
    故选B.
    点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    10、C
    【解析】
    连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.
    【详解】
    解:如图,连接AE,

    ∵AB是直径,
    ∴∠AEB=90°,即AE⊥BC,
    ∵EB=EC,
    ∴AB=AC,
    ∴∠C=∠B,
    ∵∠BAC=50°,
    ∴∠C= (180°-50°)=65°,
    故选:C.
    【点睛】
    本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
    11、D
    【解析】
    试题解析:∵四边形ABCD为矩形,
    ∴∠BAD=∠ABC=∠ADC=90°,
    ∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,

    ∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
    ∵∠2=∠1=112°,
    而∠ABD=∠D′=90°,
    ∴∠3=180°-∠2=68°,
    ∴∠BAB′=90°-68°=22°,
    即∠α=22°.
    故选D.
    12、B
    【解析】
    由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.
    【详解】
    解:∵四边形ABCD是矩形
    ∴AB∥CD,AB=CD,AD=BC,AD∥BC,
    ∵A(1,4)、B(1,1)、C(5,1),
    ∴AB∥CD∥y轴,AD∥BC∥x轴
    ∴点D坐标为(5,4)
    故选B.
    【点睛】
    本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4
    【解析】
    过点C作CH⊥AB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA'的值,然后利用旋转的性质可判定△ACA'∽△BCB',继而利用相似三角形的对应边成比例的性质可得出BB'的值.
    【详解】
    解:过点C作CH⊥AB于H,

    ∵在Rt△ABC中,∠C=90,cosA= ,
    ∴AC=AB•cosA=6,BC=3 ,
    在Rt△ACH中,AC=6,cosA=,
    ∴AH=AC•cosA=4,
    由旋转的性质得,AC=A'C,BC=B'C,
    ∴△ACA'是等腰三角形,因此H也是AA'中点,
    ∴AA'=2AH=8,
    又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,
    ∴∠ACA'=∠BCB',
    ∴△ACA'∽△BCB',
    ∴即 ,
    解得:BB'=4.
    故答案为:4.
    【点睛】
    此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出△ACA'∽△BCB'.
    14、13
    【解析】
    试题解析:因为正方形AECF的面积为50cm2,
    所以
    因为菱形ABCD的面积为120cm2,
    所以
    所以菱形的边长
    故答案为13.
    15、1.
    【解析】
    试题解析:连接OE,如下图所示,

    则:OE=OA=R,
    ∵AB是⊙O的直径,弦EF⊥AB,
    ∴ED=DF=4,
    ∵OD=OA-AD,
    ∴OD=R-2,
    在Rt△ODE中,由勾股定理可得:
    OE2=OD2+ED2,
    ∴R2=(R-2)2+42,
    ∴R=1.
    考点:1.垂径定理;2.解直角三角形.
    16、1.
    【解析】
    试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
    考点:二次根式有意义的条件.
    17、3.
    【解析】
    试题解析:把(-1,0)代入得:
    2-3+k-2=0,
    解得:k=3.
    故答案为3.
    18、15π
    【解析】
    根据圆的面积公式、扇形的面积公式计算即可.
    【详解】
    圆锥的母线长==5,,
    圆锥底面圆的面积=9π
    圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,
    ∴圆锥的侧面展开图的面积=×6π×5=15π,
    【点睛】
    本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
    【解析】
    (1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
    (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
    【详解】
    解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
    根据题意可得,
    化简得:540-10x=360,
    解得:x=18,
    经检验:x=18是原分式方程的解,且符合题意,
    则A类图书的标价为:1.5x=1.5×18=27(元),
    答:A类图书的标价为27元,B类图书的标价为18元;
    (2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
    由题意得,,
    解得:600≤t≤800,
    则总利润w=(27-a-18)t+(18-12)(1000-t)
    =(9-a)t+6(1000-t)
    =6000+(3-a)t,
    故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
    当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
    当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
    答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
    【点睛】
    本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
    20、-
    【解析】
    先化简,再解不等式组确定x的值,最后代入求值即可.
    【详解】
    (﹣)÷,

    =
    解不等式组,
    可得:﹣2<x≤2,
    ∴x=﹣1,0,1,2,
    ∵x=﹣1,0,1时,分式无意义,
    ∴x=2,
    ∴原式==﹣.
    21、(1)鸡场垂直于墙的一边AB的长为2米;(1)鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
    【解析】
    试题分析:(1)首先设鸡场垂直于墙的一边AB的长为x 米,然后根据题意可得方程x(40-1x)=168,即可求得x的值,又由墙长15m,可得x=2,则问题得解;
    (1)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案;
    解:(1)设鸡场垂直于墙的一边AB的长为x米,
    则 x(40﹣1x)=168,
    整理得:x1﹣10x+84=0,
    解得:x1=2,x1=6,
    ∵墙长15m,
    ∴0≤BC≤15,即0≤40﹣1x≤15,
    解得:7.5≤x≤10,
    ∴x=2.
    答:鸡场垂直于墙的一边AB的长为2米.
    (1)围成养鸡场面积为S米1,
    则S=x(40﹣1x)
    =﹣1x1+40x
    =﹣1(x1﹣10x)
    =﹣1(x1﹣10x+101)+1×101
    =﹣1(x﹣10)1+100,
    ∵﹣1(x﹣10)1≤0,
    ∴当x=10时,S有最大值100.
    即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
    点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.
    22、(2)证明见解析;(2)k2=2,k2=2.
    【解析】
    (2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;
    (2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.
    【详解】
    (2)证明:△=b2﹣4ac,
    =[﹣(2k+2)]2﹣4(k2+k),
    =4k2+4k+2﹣4k2﹣4k,
    =2>2.
    ∴方程有两个不相等的实数根;
    (2)∵方程有一个根为2,
    ∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,
    解得:k2=2,k2=2.
    【点睛】
    本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.
    23、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【解析】
    设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
    【详解】
    解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
    根据题意得:
    解得:x=1.
    经检验:x=1是原方程的解且符合实际问题的意义.
    ∴1.2x=1.2×1=2.
    答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【点睛】
    此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
    24、(1)t=秒;(1)t=5﹣(s).
    【解析】
    (1)利用勾股定理列式求出 AB,再表示出 AP、AQ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;
    (1)过点 P 作 PC⊥OA 于 C,利用∠OAB 的正弦求出 PC,然后根据三角形的面积公式列出方程求解即可.
    【详解】
    解:(1)∵点 A(0,6),B(8,0),
    ∴AO=6,BO=8,
    ∴AB= ==10,
    ∵点P的速度是每秒1个单位,点 Q 的速度是每秒1个单位,
    ∴AQ=t,AP=10﹣t,
    ①∠APQ是直角时,△APQ∽△AOB,
    ∴,
    即,
    解得 t=>6,舍去;
    ②∠AQP 是直角时,△AQP∽△AOB,
    ∴,
    即,
    解得 t=,
    综上所述,t=秒时,△APQ 与△AOB相似;

    (1)如图,过点 P 作 PC⊥OA 于点C,
    则 PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),
    ∴△APQ的面积=×t×(10﹣t)=8,
    整理,得:t1﹣10t+10=0,
    解得:t=5+>6(舍去),或 t=5﹣,
    故当 t=5﹣(s)时,△APQ的面积为 8cm1.
    【点睛】
    本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.
    25、(1),45°;(2)不成立,理由见解析;(3) .
    【解析】
    (1)由正方形的性质,可得 ,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性质得到,∠CAB==45°,又因为∠CBA=90°,所以∠AHB=45°.
    (2)由矩形的性质,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性质可得∠CAE=∠CBF,,则∠CAB=60°,又因为∠CBA=90°,
    求得∠AHB=30°,故不成立.
    (3)分两种情况讨论:①作BM⊥AE于M,因为A、E、F三点共线,及∠AFB=30°,∠AFC=90°,进而求得AC和EF ,根据勾股定理求得AF,则AE=AF﹣EF,再由(2)得: ,所以BF=3﹣3,故BM= .
    ②如图3所示:作BM⊥AE于M,由A、E、F三点共线,得:AE=6+2,BF=3+3,则BM=.
    【详解】
    解:(1)如图1所示:∵四边形ABCD和EFCG均为正方形,
    ∴ ,∠ACB=∠GEC=45°,
    ∴∠ACE=∠BCF,
    ∴△CAE∽△CBF,
    ∴∠CAE=∠CBF,,
    ∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,
    ∵∠CBA=90°,
    ∴∠AHB=180°﹣90°﹣45°=45°,
    故答案为,45°;
    (2)不成立;理由如下:
    ∵四边形ABCD和EFCG均为矩形,且∠ACB=∠ECF=30°,
    ∴,∠ACE=∠BCF,
    ∴△CAE∽△CBF,
    ∴∠CAE=∠CBF,,
    ∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,
    ∵∠CBA=90°,
    ∴∠AHB=180°﹣90°﹣60°=30°;
    (3)分两种情况:
    ①如图2所示:作BM⊥AE于M,当A、E、F三点共线时,
    由(2)得:∠AFB=30°,∠AFC=90°,
    在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,
    ∴AC=,EF=CF×tan30°=6× =2 ,
    在Rt△ACF中,AF= ,
    ∴AE=AF﹣EF=6 ﹣2,
    由(2)得: ,
    ∴BF= (6﹣2)=3﹣3,
    在△BFM中,∵∠AFB=30°,
    ∴BM=BF= ;
    ②如图3所示:作BM⊥AE于M,当A、E、F三点共线时,
    同(2)得:AE=6+2,BF=3+3,
    则BM=BF=;
    综上所述,当A、E、F三点共线时,点B到直线AE的距离为.

    【点睛】
    本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.
    26、(1)证明见解析;(2)9﹣3π
    【解析】
    试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
    试题解析:(1)如图连接OD.
    ∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
    ∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
    在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
    ∴CF⊥OD, ∴CF是⊙O的切线.
    (2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
    ∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
    ∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
    ∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
    ∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.

    27、(1)证明见解析;(2)AD=2.
    【解析】
    (1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;
    (2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.
    【详解】
    (1)如图,连接OA,交BC于F,

    则OA=OB,
    ∴∠D=∠DAO,
    ∵∠D=∠C,
    ∴∠C=∠DAO,
    ∵∠BAE=∠C,
    ∴∠BAE=∠DAO,
    ∵BD是⊙O的直径,
    ∴∠BAD=90°,
    即∠DAO+∠BAO=90°,
    ∴∠BAE+∠BAO=90°,即∠OAE=90°,
    ∴AE⊥OA,
    ∴AE与⊙O相切于点A;
    (2)∵AE∥BC,AE⊥OA,
    ∴OA⊥BC,
    ∴,FB=BC,
    ∴AB=AC,
    ∵BC=2,AC=2,
    ∴BF=,AB=2,
    在Rt△ABF中,AF==1,
    在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
    ∴OB=4,
    ∴BD=8,
    ∴在Rt△ABD中,AD=.
    【点睛】
    本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.

    相关试卷

    江苏省无锡市西漳中学2021-2022学年中考适应性考试数学试题含解析:

    这是一份江苏省无锡市西漳中学2021-2022学年中考适应性考试数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    江苏省高邮市南海中学2021-2022学年中考一模数学试题含解析:

    这是一份江苏省高邮市南海中学2021-2022学年中考一模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,方程x2+2x﹣3=0的解是,一次函数的图像不经过的象限是等内容,欢迎下载使用。

    2021-2022学年江苏省扬州市竹西中学中考适应性考试数学试题含解析:

    这是一份2021-2022学年江苏省扬州市竹西中学中考适应性考试数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map