|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省滨淮十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省滨淮十校联考最后数学试题含解析01
    2021-2022学年江苏省滨淮十校联考最后数学试题含解析02
    2021-2022学年江苏省滨淮十校联考最后数学试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省滨淮十校联考最后数学试题含解析

    展开
    这是一份2021-2022学年江苏省滨淮十校联考最后数学试题含解析,共25页。试卷主要包含了一、单选题,对于不等式组,下列说法正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,一艘海轮位于灯塔P的南偏东70°方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40°的N处,则N处与灯塔P的 距离为

    A.40海里 B.60海里 C.70海里 D.80海里
    2.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
    甲的路线为:A→C→B;
    乙的路线为:A→D→E→F→B,其中E为AB的中点;
    丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
    若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为(  )

    A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲
    3.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )

    A. B. C. D.
    4.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    5.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )

    A.π B. C. D.
    6.对于不等式组,下列说法正确的是(  )
    A.此不等式组的正整数解为1,2,3
    B.此不等式组的解集为
    C.此不等式组有5个整数解
    D.此不等式组无解
    7.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )

    A.先向下移动1格,再向左移动1格 B.先向下移动1格,再向左移动2格
    C.先向下移动2格,再向左移动1格 D.先向下移动2格,再向左移动2格
    8.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为(  )
    A.﹣ B.﹣3 C. D.3
    9.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )

    A. B. C. D.
    10.将1、、、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是( )

    A. B.6 C. D.
    11.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )

    A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
    B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
    C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
    D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
    12.下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.

    14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.

    15.菱形ABCD中,,其周长为32,则菱形面积为____________.
    16.已知关于x的不等式组只有四个整数解,则实数a的取值范是______.
    17.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.
    18.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.

    (1)求证:DE=DB:
    (2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
    (3)若BD=6,DF=4,求AD的长
    20.(6分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
    表1:甲调查九年级30位同学植树情况
    每人植树棵数
    7
    8
    9
    10
    人数
    3
    6
    15
    6
    表2:乙调查三个年级各10位同学植树情况
    每人植树棵数
    6
    7
    8
    9
    10
    人数
    3
    6
    3
    12
    6
    根据以上材料回答下列问题:
    (1)关于于植树棵数,表1中的中位数是   棵;表2中的众数是   棵;
    (2)你认为同学   (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
    (3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
    21.(6分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).
    (1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.
    ①点A、B、C在此斜坐标系内的坐标分别为A   ,B   ,C   .
    ②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为   .
    ③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为   .

    (2)若ω=120°,O为坐标原点.
    ①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=4 ,求圆M的半径及圆心M的斜坐标.
    ②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是   .

    22.(8分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.
    综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.

    23.(8分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根.
    (1)求k的取值范围;
    (2)若x1,x2是这个方程的两个实数根,求的值;
    (3)根据(2)的结果你能得出什么结论?
    24.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
    25.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是  ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   ;△A2B2C2的面积是   平方单位.

    26.(12分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
    七年级英语口语测试成绩统计表
    成绩分
    等级
    人数

    A
    12

    B
    m

    C
    n

    D
    9

    请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上包括B 级的学生人数.
    27.(12分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    分析:依题意,知MN=40海里/小时×2小时=80海里,
    ∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,
    ∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.
    ∴NP=NM=80海里.故选D.
    2、A
    【解析】
    分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
    详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
    ∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
    图3与图1中,三个三角形相似,所以 ====.
    ∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
    ∴甲=丙.∴甲=乙=丙.
    故选A.

    点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.
    3、C
    【解析】
    试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.
    故选C.
    考点:三视图
    4、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    5、B
    【解析】
    连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
    【详解】
    解:连接OB,OC.

    ∵∠BOC=2∠BAC=60°,
    ∵OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=1,
    ∴的长=,
    故选B.
    【点睛】
    考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    6、A
    【解析】
    解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
    点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    7、C
    【解析】
    根据题意,结合图形,由平移的概念求解.
    【详解】
    由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.
    【点睛】
    本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.
    8、B
    【解析】
    设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
    【详解】
    设该点的坐标为(a,b),则|b|=1|a|,
    ∵点(a,b)在正比例函数y=kx的图象上,
    ∴k=±1.
    又∵y值随着x值的增大而减小,
    ∴k=﹣1.
    故选:B.
    【点睛】
    本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
    9、C
    【解析】
    连接CD,交MN于E,
    ∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
    ∴MN⊥CD,且CE=DE.∴CD=2CE.
    ∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
    ∴.
    ∵在△CMN中,∠C=90°,MC=6,NC=,∴
    ∴.
    ∴.故选C.
    10、B
    【解析】
    根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.
    【详解】
    第一排1个数,第二排2个数.第三排3个数,第四排4个数,
    …第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,
    根据数的排列方法,每四个数一个轮回,
    由此可知:(1,5)表示第1排从左向右第5个数是,
    (13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,
    第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是,
    则(1,5)与(13,1)表示的两数之积是1.
    故选B.
    11、C
    【解析】
    Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可
    【详解】
    ∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
    ∴DO=BC=2,CO=3,
    ∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
    或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
    故选:C.
    【点睛】
    本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化
    12、A
    【解析】
    分析:根据中心对称的定义,结合所给图形即可作出判断.
    详解:A、是中心对称图形,故本选项正确;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误;
    故选:A.
    点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
    【详解】
    解:如图,连接AC、CF、GE,CF和GE相交于O点
    ∵在菱形ABCD中, ,BC=1,
    ∴,AC=1,

    ∵在菱形CEFG中,是它的对角线,
    ∴,
    ∴,

    ∵==,
    ∴在,
    又∵H是AF的中点
    ∴.

    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
    14、
    【解析】
    ∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
    ∵∠CAC′=15°,
    ∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
    ∴阴影部分的面积=×5×tan30°×5=.
    15、
    【解析】
    分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.
    详解:∵菱形ABCD中,其周长为32,
    ∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
    ∵,
    ∴△ABD为等边三角形,
    ∴AB=BD=8,
    ∴OB=4,
    在Rt△AOB中,OB=4,AB=8,
    根据勾股定理可得OA=4,
    ∴AC=2AO=,
    ∴菱形ABCD的面积为:=.

    点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.
    16、-3<a≤-2
    【解析】
    分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.
    详解:
    由不等式①解得:
    由不等式②移项合并得:−2x>−4,
    解得:x<2,
    ∴原不等式组的解集为
    由不等式组只有四个整数解,即为1,0,−1,−2,
    可得出实数a的范围为
    故答案为
    点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.
    17、3.05×105
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】

    故答案为:.
    【点睛】
    本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.
    18、 .
    【解析】
    当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.
    【详解】
    连接CP、CQ;如图所示:
    ∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短.
    ∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.
    故答案为:.

    【点睛】
    本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)见解析;(2)2 (3)1
    【解析】
    (1)通过证明∠BED=∠DBE得到DB=DE;
    (2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
    (3)证明△DBF∽△ADB,然后利用相似比求AD的长.
    【详解】
    (1)证明:∵AD平分∠BAC,BE平分∠ABD,
    ∴∠1=∠2,∠3=∠4,
    ∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
    ∴DB=DE;
    (2)解:连接CD,如图,

    ∵∠BAC=10°,
    ∴BC为直径,
    ∴∠BDC=10°,
    ∵∠1=∠2,
    ∴DB=BC,
    ∴△DBC为等腰直角三角形,
    ∴BC=BD=4,
    ∴△ABC外接圆的半径为2;
    (3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
    ∴△DBF∽△ADB,
    ∴=,即=,
    ∴AD=1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
    20、(1)9,9;(2)乙;(3)1680棵;
    【解析】
    (1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
    【详解】
    (1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
    故答案为:9,9;
    (2)乙同学所抽取的样本能更好反映此次植树活动情况;
    故答案为:乙;
    (3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
    答:本次活动200位同学一共植树1680棵.
    【点睛】
    本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
    21、(1)①(2,0),(1,),(﹣1,);②y=x;③ y=x,y=﹣x+;(2)①半径为4,M(,);②﹣1<r<+1.
    【解析】
    (1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;
    (2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.
    【详解】
    (1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,

    由题意OC=CD=1,OA=BC=2,
    ∴BD=OE=1,OD=CF=BE=,
    ∴A(2,0),B(1,),C(﹣1,),
    故答案为(2,0),(1,),(﹣1,);
    ②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,

    ∵OD∥BE,OD∥PM,
    ∴BE∥PM,
    ∴=,
    ∴,
    ∴y=x;
    ③如图2﹣3中,作QM∥OA交OD于M,

    则有,
    ∴,
    ∴y=﹣x+,
    故答案为y=x,y=﹣x+;
    (2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,

    ∵ω=120°,OM⊥y轴,
    ∴∠MOA=30°,
    ∵MF⊥OA,OA=4,
    ∴OF=FA=2,
    ∴FM=2,OM=2FM=4,
    ∵MN∥y轴,
    ∴MN⊥OM,
    ∴MN=,ON=2MN=,
    ∴M(,);
    ②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.

    ∵MK∥x轴,ω=120°,
    ∴∠MKO=60°,
    ∵MK=OK=2,
    ∴△MKO是等边三角形,
    ∴MN=,
    当FN=1时,MF=﹣1,
    当EN=1时,ME=+1,
    观察图象可知当⊙M的半径r的取值范围为﹣1<r<+1.
    故答案为:﹣1<r<+1.
    【点睛】
    本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.
    22、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为.
    【解析】
    综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;
    (2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.
    【详解】
    (1)①作∠BAC的平分线,交BC于点O;
    ②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.

    (2)相切;
    ∵AC=5,BC=12,
    ∴AD=5,AB==13,
    ∴DB=AB-AD=13-5=8,
    设半径为x,则OC=OD=x,BO=(12-x)
    x2+82=(12-x)2,
    解得:x=.
    答:⊙O的半径为.
    【点睛】
    本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.
    23、(1)k>-1;(2)2;(3)k>-1时,的值与k无关.
    【解析】
    (1)由题意得该方程的根的判别式大于零,列出不等式解答即可.
    (2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.
    (3)结合(1)和(2)结论可见,k>-1时,的值为定值2,与k无关.
    【详解】
    (1)∵方程有两个不等实根,
    ∴△>0,
    即4+4k>0,∴k>-1
    (2)由根与系数关系可知
    x1+x2=-2 ,x1x2=-k,



    (3)由(1)可知,k>-1时,
    的值与k无关.
    【点睛】
    本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.
    24、 (1) 4800元;(2) 降价60元.
    【解析】
    试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.
    试题解析:
    (1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;
    (2)设每件商品应降价x元,
    由题意得(360-x-280)(5x+60)=7200,
    解得x1=8,x2=60.
    要更有利于减少库存,则x=60.
    即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.
    点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.
    25、(1)(2,﹣2);
    (2)(1,0);
    (3)1.

    【解析】
    试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
    (2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
    (3)利用等腰直角三角形的性质得出△A2B2C2的面积.
    试题解析:(1)如图所示:C1(2,﹣2);
    故答案为(2,﹣2);
    (2)如图所示:C2(1,0);
    故答案为(1,0);
    (3)∵=20,=20,=40,
    ∴△A2B2C2是等腰直角三角形,
    ∴△A2B2C2的面积是:××=1平方单位.
    故答案为1.

    考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
    26、 (1)60人;(2)144°;(3)288人.
    【解析】
    等级人数除以其所占百分比即可得;
    先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
    总人数乘以A、B等级百分比之和即可得.
    【详解】
    解:本次被抽取参加英语口语测试的学生共有人;
    级所占百分比为,
    级对应的百分比为,
    则扇形统计图中 C 级的圆心角度数为;
    人,
    答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
    27、,.
    【解析】
    先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
    【详解】
    解:原式


    当时
    原式
    【点睛】
    考查分式的混合运算,掌握运算顺序是解题的关键.

    相关试卷

    江苏省泰州市高港实验校2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省泰州市高港实验校2021-2022学年十校联考最后数学试题含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列计算正确的是,一、单选题等内容,欢迎下载使用。

    江苏省南菁高级中学2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省南菁高级中学2021-2022学年十校联考最后数学试题含解析,共25页。试卷主要包含了若等式x2+ax+19=等内容,欢迎下载使用。

    江苏省江都区六校2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省江都区六校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,tan60°的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map