2021-2022学年吉林省汪清县中学中考数学考试模拟冲刺卷含解析
展开
这是一份2021-2022学年吉林省汪清县中学中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=a,下列命题是真命题的个数有等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
A.1 B. C. D.
2.下列性质中菱形不一定具有的性质是( )
A.对角线互相平分 B.对角线互相垂直
C.对角线相等 D.既是轴对称图形又是中心对称图形
3.的绝对值是( )
A. B. C. D.
4.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )
A.8米 B.米 C.米 D.米
5.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为
A. B. C. D.
6.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是( )
A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
7.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为( )
A.1或2 B.2或3 C.3或4 D.4或5
8.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为( )
A.0 B.0或﹣2 C.﹣2 D.2
9.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( )
A.152元 B.156元 C.160元 D.190元
10.下列命题是真命题的个数有( )
①菱形的对角线互相垂直;
②平分弦的直径垂直于弦;
③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
A.1个 B.2个 C.3个 D.4个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____
12.已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是_____.
13.计算:________.
14.若分式方程的解为正数,则a的取值范围是______________.
15.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.
16.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:(-)¸,其中=
18.(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.
求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.
19.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.
20.(8分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:
(1)本次共抽查了八年级学生多少人;
(2)请直接将条形统计图补充完整;
(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;
(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?
21.(8分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。
22.(10分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
23.(12分)(1)问题发现
如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
(1)①求的值;②求∠ACD的度数.
(2)拓展探究
如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
(3)解决问题
如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.
24.已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
(1)如图1,当AB=AC,且sin∠BEF=时,求的值;
(2)如图2,当tan∠ABC=时,过D作DH⊥AE于H,求的值;
(3)如图3,连AD交BC于G,当时,求矩形BCDE的面积
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
直接利用概率的意义分析得出答案.
【详解】
解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
故选B.
【点睛】
此题主要考查了概率的意义,明确概率的意义是解答的关键.
2、C
【解析】
根据菱形的性质:①菱形具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
【详解】
解:A、菱形的对角线互相平分,此选项正确;
B、菱形的对角线互相垂直,此选项正确;
C、菱形的对角线不一定相等,此选项错误;
D、菱形既是轴对称图形又是中心对称图形,此选项正确;
故选C.
考点:菱形的性质
3、C
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
【详解】
在数轴上,点到原点的距离是,
所以,的绝对值是,
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握绝对值的概念.
4、C
【解析】
此题考查的是解直角三角形
如图:AC=4,AC⊥BC,
∵梯子的倾斜角(梯子与地面的夹角)不能>60°.
∴∠ABC≤60°,最大角为60°.
即梯子的长至少为米,
故选C.
5、B
【解析】
试题解析:在菱形中,,,所以,,在中,,
因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.
6、C
【解析】
分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
【详解】
解:①a>1时,二次函数图象开口向上,
∵|x1﹣2|>|x2﹣2|,
∴y1>y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
②a<1时,二次函数图象开口向下,
∵|x1﹣2|>|x2﹣2|,
∴y1<y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
综上所述,表达式正确的是a(y1﹣y2)>1.
故选:C.
【点睛】
本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
7、A
【解析】
连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B′到BC的距离.
【详解】
解:如图,连接B′D,过点B′作B′M⊥AD于M,
∵点B的对应点B′落在∠ADC的角平分线上,
∴设DM=B′M=x,则AM=7﹣x,
又由折叠的性质知AB=AB′=5,
∴在直角△AMB′中,由勾股定理得到:,
即,
解得x=3或x=4,
则点B′到BC的距离为2或1.
故选A.
【点睛】
本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
8、C
【解析】
由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.
【详解】
∵一元二次方程mx1+mx﹣=0有两个相等实数根,
∴△=m1﹣4m×(﹣)=m1+1m=0,
解得:m=0或m=﹣1,
经检验m=0不合题意,
则m=﹣1.
故选C.
【点睛】
此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
9、C
【解析】
【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.
【详解】设进价为x元,依题意得
240×0.8-x=20x℅
解得x=160
所以,进价为160元.
故选C
【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.
10、C
【解析】
根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
【详解】
解:①菱形的对角线互相垂直是真命题;
②平分弦(非直径)的直径垂直于弦,是假命题;
③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
故选C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、8个
【解析】
根据概率公式结合取出红球的概率即可求出袋中小球的总个数.
【详解】
袋中小球的总个数是:2÷=8(个).
故答案为8个.
【点睛】
本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.
12、m>1.
【解析】
分析:根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.
详解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.
故答案为m>1.
点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.
13、
【解析】
根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
【详解】
解:原式=
=
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
14、a<8,且a≠1
【解析】
分式方程去分母得:x=2x-8+a,
解得:x=8- a,
根据题意得:8- a>2,8- a≠1,
解得:a<8,且a≠1.
故答案为:a<8,且a≠1.
【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.
15、2或2.
【解析】
试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.
故答案为2或2.
考点:勾股定理
16、
【解析】
试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.
考点:1.解直角三角形、2.垂径定理.
三、解答题(共8题,共72分)
17、
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.
详解:原式=
将
原式=
点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.
18、(1)y=﹣x2+2x+3;(2)DE+DF有最大值为;(3)①存在,P的坐标为(,)或(,);②<t<.
【解析】
(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答
(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答
(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答
②观察函数图象与△ACQ为锐角三角形时的情况,即可解答
【详解】
解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,
∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),
∵DF∥AC,
∴∠DFG=∠ACO,易知抛物线对称轴为x=1,
∴DG=x-1,DF=(x-1),
∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,
∴当x=,DE+DF有最大值为;
答图1 答图2
(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,
∴直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(﹣1,0)代入得n=,
∴直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);
②<t<.
【点睛】
此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.
19、(1);(2).
【解析】
试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.
试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:
(2)、画树状图得:
结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)
∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,
∴正好客厅灯和走廊灯同时亮的概率是=.
考点:概率的计算.
20、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【解析】
(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;
(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;
(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;
(4)利用总人数12000乘以对应的比例即可.
【详解】
(1)本次共抽查了八年级学生是:30÷20%=150人;
故答案为150;
(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=1.
(3)人均阅读时间在1~1.5小时对应的圆心角度数是:
故答案为108;
(4) (人),
答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21、-2
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.
【详解】
原式=
=
= ,
∵x≠±1且x≠0,
∴在-1≤x≤2中符合条件的x的值为x=2,
则原式=- =-2.
【点睛】
此题考查分式的化简求值,解题关键在于掌握运算法则.
22、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
【解析】
(1)用总人数50减去其它部门的人数;
(2)根据中位数和众数的定义求解即可;
(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
【详解】
(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
在这些数中1600元出现的次数最多,因而众数是1600元;
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合理些.
(4)(元).
能反映该公司员工的月工资实际水平.
23、(1)1,45°;(2)∠ACD=∠B, =k;(3).
【解析】
(1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
【详解】
(1)∵∠A=90°,
∴AB=AC,
∴∠B=45°,
∵∠PAD=90°,∠APD=∠B=45°,
∴AP=AD,
∴∠BAP=∠CAD,
在△ABP 与△ACD 中,
AB=AC, ∠BAP=∠CAD,AP=AD,
∴△ABP≌△ACD,
∴PB=CD,∠ACD=∠B=45°,
∴=1,
(2)
∵∠BAC=∠PAD=90°,∠B=∠APD,
∴△ABC∽△APD,
∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴∠ACD=∠B,
(3)过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=1,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=7,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
24、 (1) ;(2)80;(3)100.
【解析】
(1)过A作AK⊥BC于K,根据sin∠BEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.
【详解】
解:(1)过A作AK⊥BC于K,
∵sin∠BEF=,sin∠FAK=,
∴,
设FK=3a,AK=5a,
∴AK=4a,
∵AB=AC,∠BAC=90°,
∴BK=CK=4a,
∴BF=a,
又∵CF=7a,
∴
(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,
∵∠AGE=∠DHE=90°,
∴△EGA∽△EHD,
∴,
∴,其中EG=BK,
∵BC=10,tan∠ABC=,
cos∠ABC=,
∴BA=BC· cos∠ABC=,
BK= BA·cos∠ABC=
∴EG=8,
另一方面:ED=BC=10,
∴EH·EA=80
(3)延长AB、ED交于K,延长AC、ED交于T,
∵BC∥KT, ,
∴,同理:
∵FG2= BF·CG ∴,
∴ED2= KE·DT ∴ ,
又∵△KEB∽△CDT,∴,
∴KE·DT =BE2, ∴BE2=ED2
∴ BE=ED
∴
【点睛】
此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.
相关试卷
这是一份辽宁省营口中学2021-2022学年中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,属于不确定事件的是等内容,欢迎下载使用。
这是一份吉林省汪清县2022年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2021-2022学年吉林省吉林市第七中学中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。