2021-2022学年河北省唐山市友谊中学中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.若关于的一元二次方程有两个不相等的实数根,则一次函数
的图象可能是:
A. B. C. D.
2.下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
3.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )
A. B.a C. D.
4.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
A. B.
C. D.
5.已知二次函数(为常数),当时,函数的最小值为5,则的值为( )
A.-1或5 B.-1或3 C.1或5 D.1或3
6.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A.6π B.4π C.8π D.4
7.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为( )
A.0.135×106 B.1.35×105 C.13.5×104 D.135×103
8.下列关于x的方程中一定没有实数根的是( )
A. B. C. D.
9.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )
A. B. C.9 D.
10.计算-5x2-3x2的结果是( )
A.2x2 B.3x2 C.-8x2 D.8x2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.规定一种新运算“*”:a*b=a-b,则方程x*2=1*x的解为________.
12.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.
13.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.
14.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.
15.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).
16.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
18.(8分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
路程(千米)
运费(元/吨•千米)
甲库
乙库
甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
若从甲库运往A库粮食x吨,
(1)填空(用含x的代数式表示):
①从甲库运往B库粮食 吨;
②从乙库运往A库粮食 吨;
③从乙库运往B库粮食 吨;
(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
19.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
20.(8分)如图,一次函数的图象与反比例函数的图象交于,B 两点.
(1)求一次函数与反比例函数的解析式;
(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.
21.(8分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
22.(10分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点.作交直线于点,连接.
(1)由题意易知,,观察图,请猜想另外两组全等的三角形 ; ;
(2)求证:四边形是平行四边形;
(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
23.(12分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当>>0时,x的取值范围.
24.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由方程有两个不相等的实数根,
可得,
解得,即异号,
当时,一次函数的图象过一三四象限,
当时,一次函数的图象过一二四象限,故答案选B.
2、D
【解析】
【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.
【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;
B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;
C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;
D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,
故选D.
【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.
3、A
【解析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
【详解】
如图,取BC的中点G,连接MG,
∵旋转角为60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,
∴HB=AB,
∴HB=BG,
又∵MB旋转到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
∴MG=CG=×a=,
∴HN=,
故选A.
【点睛】
本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
4、C
【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
【详解】
解:原计划用时为:,实际用时为:.
所列方程为:,
故选C.
【点睛】
本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
5、A
【解析】
由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x
【详解】
解:∵x>h时,y随x的增大而增大,当x
∴当x=1时,y取得最小值5,
可得:,
解得:h=−1或h=3(舍),
∴h=−1;
②若h>3,当时,y随x的增大而减小,
当x=3时,y取得最小值5,
可得:,
解得:h=5或h=1(舍),
∴h=5,
③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
∴此种情况不符合题意,舍去.
综上所述,h的值为−1或5,
故选:A.
【点睛】
本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.
6、A
【解析】
根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
那么它的表面积=2π×2+π×1×1×2=6π,故选A.
7、B
【解析】
根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
【详解】
解:135000用科学记数法表示为:1.35×1.
故选B.
【点睛】
科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【解析】
根据根的判别式的概念,求出△的正负即可解题.
【详解】
解: A. x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,
B. , △=36-144=-1080,∴原方程没有实数根,
C. , , △=10,∴原方程有两个不相等的实数根,
D. , △=m2+80,∴原方程有两个不相等的实数根,
故选B.
【点睛】
本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.
9、A
【解析】
解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.
点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.
10、C
【解析】
利用合并同类项法则直接合并得出即可.
【详解】
解:
故选C.
【点睛】
此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据题中的新定义化简所求方程,求出方程的解即可.
【详解】
根据题意得:x-×2=×1-,
x=,
解得:x=,
故答案为x=.
【点睛】
此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.
12、50
【解析】
试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.
试题解析:连结EF,如图,
∵四边形ABCD内接于⊙O,
∴∠A+∠BCD=180°,
而∠BCD=∠ECF,
∴∠A+∠ECF=180°,
∵∠ECF+∠1+∠2=180°,
∴∠1+∠2=∠A,
∵∠A+∠AEF+∠AFE=180°,
即∠A+∠AEB+∠1+∠2+∠AFD=180°,
∴∠A+80°+∠A=180°,
∴∠A=50°.
考点:圆内接四边形的性质.
13、88
【解析】
试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:
∵笔试按60%、面试按40%计算,
∴总成绩是:90×60%+85×40%=88(分).
14、1:1.
【解析】
试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.
考点:相似三角形的性质.
15、.
【解析】
作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
【详解】
作AH∥EF交BC于H.
∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
∵AE=ED=HF,∴.
∵BC=2AD,∴2.
∵BF=FC,∴,∴.
∵.
故答案为:.
【点睛】
本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
16、30°
【解析】
试题解析:∵关于x的方程有两个相等的实数根,
∴
解得:
∴锐角α的度数为30°;
故答案为30°.
三、解答题(共8题,共72分)
17、(1)证明见解析;(1)2
【解析】
分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.
点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
18、(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
【解析】
分析:(Ⅰ)根据题意解答即可;
(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.
详解:(Ⅰ)设从甲库运往A库粮食x吨;
①从甲库运往B库粮食(100﹣x)吨;
②从乙库运往A库粮食(1﹣x)吨;
③从乙库运往B库粮食(20+x)吨;
故答案为(100﹣x);(1﹣x);(20+x).
(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.
则,解得:0≤x≤1.
从甲库运往A库粮食x吨时,总运费为:
y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]
=﹣30x+39000;
∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).
∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.
答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.
19、(1).(2)①判断:.理由见解析;②或.
【解析】
(1)利用代点法可以求出参数 ;
(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
②根据①中的情况,可知或再结合图像可以确定的取值范围;
【详解】
解:(1)∵函数的图象经过点,
∴将点代入,即 ,得:
∵直线与轴交于点,
∴将点代入,即 ,得:
(2)①判断: .理由如下:
当时,点P的坐标为,如图所示:
∴点C的坐标为 ,点D的坐标为
∴ , .
∴.
②由①可知当时
所以由图像可知,当直线往下平移的时也符合题意,即 ,
得;
当时,点P的坐标为
∴点C的坐标为 ,点D的坐标为
∴ ,
∴
当 时,即,也符合题意,
所以 的取值范围为:或 .
【点睛】
本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
20、(1);;(2)或;
【解析】
(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.
【详解】
(1) 过点,
,
反比例函数的解析式为;
点在 上,
,
,
一次函数过点,
,
解得:.
一次函数解析式为;
(2)由图可知,当或时,一次函数值大于反比例函数值.
【点睛】
本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.
21、1
【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
【详解】
解:原式=2﹣+2×﹣3+1
=1.
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
22、(1);(2)见解析;(3)存在,2
【解析】
(1)利用正方形的性质及全等三角形的判定方法证明全等即可;
(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;
(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案.
【详解】
解:(1)四边形是正方形,
,
,
,
,
,
在和中,
在和中,
,
故答案为;
(2)证明:由(1)可知,
,
四边形是平行四边形.
(3)解:存在,理由如下:
是等腰直角三角形,
最短时,的面积最小,
当时,最短,此时,
的面积最小为.
【点睛】
本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键.
23、(1)y=;y=x+1;(2)∠ACO=45°;(3)0
(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;
(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;
(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.
【详解】
(1)∵△AOB的面积为1,并且点A在第一象限,
∴k=2,∴y=;
∵点A的横坐标为1,
∴A(1,2).
把A(1,2)代入y=ax+1得,a=1.
∴y=x+1.
(2)令y=0,0=x+1,
∴x=−1,
∴C(−1,0).
∴OC=1,BC=OB+OC=2.
∴AB=CB,
∴∠ACO=45°.
(3)由图象可知,在第一象限,当y>y>0时,0
此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.
24、(1)(2,﹣2);
(2)(1,0);
(3)1.
【解析】
试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
(3)利用等腰直角三角形的性质得出△A2B2C2的面积.
试题解析:(1)如图所示:C1(2,﹣2);
故答案为(2,﹣2);
(2)如图所示:C2(1,0);
故答案为(1,0);
(3)∵=20,=20,=40,
∴△A2B2C2是等腰直角三角形,
∴△A2B2C2的面积是:××=1平方单位.
故答案为1.
考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
北京三帆中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份北京三帆中学2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了3的倒数是,的绝对值是等内容,欢迎下载使用。
安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份安徽亳州刘桥中学2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。
2021-2022学年广东省深圳中学中考数学模拟精编试卷含解析: 这是一份2021-2022学年广东省深圳中学中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列运算正确的是,计算3的结果是,的倒数是等内容,欢迎下载使用。