2021-2022学年贵州省遵义市名校中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )
A. B. C. D.
2.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )
A. B. C. D.
3.若△÷,则“△”可能是( )
A. B. C. D.
4.关于的分式方程解为,则常数的值为( )
A. B. C. D.
5.a、b互为相反数,则下列成立的是( )
A.ab=1 B.a+b=0 C.a=b D.=-1
6.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
A.-6 B.-5 C.-6或-5 D.6或5
7.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )
A.810 年 B.1620 年 C.3240 年 D.4860 年
8.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为( )
A.6 B.8 C.10 D.12
9.实数4的倒数是( )
A.4 B. C.﹣4 D.﹣
10.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )
A. B.
C. D.
11.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是( )
A.10 B.12 C.20 D.24
12.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )
A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.
14.计算:()0﹣=_____.
15.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).
16.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.
17.一组数:2,1,3,,7,,23,…,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为______.
18.不等式组的最大整数解是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
20.(6分)解不等式组,并将它的解集在数轴上表示出来.
21.(6分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;
(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.
22.(8分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
23.(8分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.
如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
24.(10分)观察下列各式:
①
②
③
由此归纳出一般规律__________.
25.(10分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
(1)线段AE=______;
(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.
26.(12分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
27.(12分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
将A、B、C、D分别展开,能和原图相对应的即为正确答案:
【详解】
A、展开得到,不能和原图相对应,故本选项错误;
B、展开得到,能和原图相对,故本选项正确;
C、展开得到,不能和原图相对应,故本选项错误;
D、展开得到,不能和原图相对应,故本选项错误.
故选B.
2、D
【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故选D.
点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.
3、A
【解析】
直接利用分式的乘除运算法则计算得出答案.
【详解】
。
故选:A.
【点睛】
考查了分式的乘除运算,正确分解因式再化简是解题关键.
4、D
【解析】
根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
【详解】
解:把x=4代入方程,得
,
解得a=1.
经检验,a=1是原方程的解
故选D.
点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
5、B
【解析】
依据相反数的概念及性质即可得.
【详解】
因为a、b互为相反数,
所以a+b=1,
故选B.
【点睛】
此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.
6、A
【解析】
试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
∴x1+x2=2,x1∙x2=-1
∴=.
故选A.
7、B
【解析】
根据半衰期的定义,函数图象的横坐标,可得答案.
【详解】
由横坐标看出1620年时,镭质量减为原来的一半,
故镭的半衰期为1620年,
故选B.
【点睛】
本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.
8、B
【解析】
根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
【详解】
∵点A的坐标为(﹣3,﹣4),
∴OA==5,
∵四边形AOCB是菱形,
∴AB=OA=5,AB∥x轴,
∴B(﹣8,﹣4),
∵点E是菱形AOCB的中心,
∴E(﹣4,﹣2),
∴k=﹣4×(﹣2)=8,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
9、B
【解析】
根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
【详解】
解:实数4的倒数是:
1÷4=.
故选:B.
【点睛】
此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
10、A
【解析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x-2)=2x+1.
故选:A.
【点睛】
此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.
11、B
【解析】
过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,
观察图象可知AB=AC=5,
∴BM==3,∴BC=2BM=6,
∴S△ABC==12,
故选B.
【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.
12、D
【解析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
【详解】
∵直线EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题解析:画树状图得:
由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,
故答案为.
14、-1
【解析】
本题需要运用零次幂的运算法则、立方根的运算法则进行计算.
【详解】
由分析可得:()0﹣=1-2=﹣1.
【点睛】
熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.
15、6
【解析】
试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.
解:过S作SC⊥AB于C.
∵∠SBC=60°,∠A=30°,
∴∠BSA=∠SBC﹣∠A=30°,
即∠BSA=∠A=30°.
∴SB=AB=1.
Rt△BCS中,BS=1,∠SBC=60°,
∴SC=SB•sin60°=1×=6(海里).
即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.
故答案为:6.
16、
【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.
【详解】
在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,
∴A′D=CA′=1,CD=A′D=,
∴.
故答案为:
【点睛】
本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.
17、-9.
【解析】
根据题中给出的运算法则按照顺序求解即可.
【详解】
解:根据题意,得:,.
故答案为:-9.
【点睛】
本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.
18、
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
【详解】
解:,
由不等式①得x≤1,
由不等式②得x>-1,
其解集是-1<x≤1,
所以整数解为0,1,1,
则该不等式组的最大整数解是x=1.
故答案为:1.
【点睛】
考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
【详解】
(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
∴﹣a+3=2,b=﹣×4+3,
∴a=2,b=1,
∴点A的坐标为(2,2),点B的坐标为(4,1),
又∵点A(2,2)在反比例函数y=的图象上,
∴k=2×2=4,
∴反比例函数的表达式为y=(x>0);
(2)延长CA交y轴于点E,延长CB交x轴于点F,
∵AC∥x轴,BC∥y轴,
则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
∴四边形OECF为矩形,且CE=4,CF=2,
∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
=2×4﹣×2×2﹣×4×1
=4,
设点P的坐标为(0,m),
则S△OAP=×2•|m|=4,
∴m=±4,
∴点P的坐标为(0,4)或(0,﹣4).
【点睛】
此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
20、x≤1,解集表示在数轴上见解析
【解析】
首先根据不等式的解法求解不等式,然后在数轴上表示出解集.
【详解】
去分母,得:3x﹣2(x﹣1)≤3,
去括号,得:3x﹣2x+2≤3,
移项,得:3x﹣2x≤3﹣2,
合并同类项,得:x≤1,
将解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.
21、 (1) y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).
【解析】
(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;
(2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;
(3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.
【详解】
(1)过点A作AH⊥x轴于点H,
∵AO=OB=2,∠AOB=120°,
∴∠AOH=60°,
∴OH=1,AH=,
∴A点坐标为:(-1,),B点坐标为:(2,0),
将两点代入y=ax2+bx得:
,
解得:,
∴抛物线的表达式为:y=x2-x;
(2)如图,
∵C(1,-),
∴tan∠EOC=,
∴∠EOC=30°,
∴∠POC=90°+30°=120°,
∵∠AOE=120°,
∴∠AOE=∠POC=120°,
∵OA=2OE,OC=,
∴当OP=OC或OP′=2OC时,△POC与△AOE相似,
∴OP=,OP′=,
∴点P坐标为(0,)或(0,).
(3)如图,取Q(,0).连接AQ,QE′.
∵
,∠QOE′=∠BOE′,
∴△OE′Q∽△OBE′,
∴,
∴E′Q=BE′,
∴AE′+BE′=AE′+QE′,
∵AE′+E′Q≥AQ,
∴E′A+E′B的最小值就是线段AQ的长,最小值为.
【点睛】
本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.
22、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
【解析】
(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
【详解】
(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
解得:x=300,
500-x=1.
答:甲服装的成本为300元、乙服装的成本为1元.
(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
∴设每件乙服装进价的平均增长率为y,
则,
解得:=0.1=10%,=-2.1(不合题意,舍去).
答:每件乙服装进价的平均增长率为10%;
(3)∵每件乙服装进价按平均增长率再次上调
∴再次上调价格为:242×(1+10%)=266.2(元)
∵商场仍按9折出售,设定价为a元时
0.9a-266.2>0
解得:a>
故定价至少为296元时,乙服装才可获得利润.
考点:一元二次方程的应用,不等式的应用,打折销售问题
23、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且
【解析】
(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;
(3)由CE=CD,可得BC= CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.
【详解】
(1)解:∵直线l与以BC为直径的圆O相切于点C.
∴∠BCE=90°,
又∵BC为直径,
∴∠BFC=∠CFE=90°,
∵∠FEC=∠CEB,
∴△CEF∽△BEC,
∴,
∵BE=15,CE=9,
即:,
解得:EF= ;
(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
∴∠ABF=∠FCD,
同理:∠AFB=∠CFD,
∴△CDF∽△BAF;
②∵△CDF∽△BAF,
∴,
又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
∴△CEF∽△BCF,
∴,
∴,
又∵AB=BC,
∴CE=CD;
(3)解:∵CE=CD,
∴BC=CD=CE,
在Rt△BCE中,tan∠CBE=,
∴∠CBE=30°,
故 为60°,
∴F在直径BC下方的圆弧上,且.
【点睛】
考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.
24、xn+1-1
【解析】
试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
试题解析:(x﹣1)(++…x+1)=.
故答案为.
考点:平方差公式.
25、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.
【解析】
(1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;
(2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;
(3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得
【详解】
(1)∵四边形ABCD为矩形,
∴BC=AD=5,
∵BE∶CE=3∶2,
则BE=3,CE=2,
∴AE===5.
(2)如图1,
当点P在线段AB上运动时,即0≤t≤4,
∵PF∥BE,
∴=,即=,
∴AF=t,
则EF=AE-AF=5-t,即y=5-t(0≤t≤4);
如图2,
当点P在射线AB上运动时,即t>4,
此时,EF=AF-AE=t-5,即y=t-5(t>4);
综上,;
(3)以点F为圆心的⊙F恰好与直线AB、BC相切时,PF=FG,分以下三种情况:
①当t=0或t=4时,显然符合条件的⊙F不存在;
②当0<t<4时,如解图1,作FG⊥BC于点G,
则FG=BP=4-t,
∵PF∥BC,
∴△APF∽△ABE,
∴=,即=,
∴PF=t,
由4-t=t可得t=,
则此时⊙F的半径PF=;
③当t>4时,如解图2,同理可得FG=t-4,PF=t,
由t-4=t可得t=16,
则此时⊙F的半径PF=12.
【点睛】
本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.
26、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
【解析】
(1)根据方案即可列出函数关系式;
(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
解:(1) 得:;
得:;
(2)
,
因为w是m的一次函数,k=-4<0,
所以w随的增加而减小,m当m=20时,w取得最小值.
即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.
27、详见解析
【解析】
先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.
【详解】
如图
作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.
【点睛】
本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.
贵州省黔南州长顺县达标名校2021-2022学年中考数学全真模拟试卷含解析: 这是一份贵州省黔南州长顺县达标名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,在2和3之间的是等内容,欢迎下载使用。
贵州省遵义市名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份贵州省遵义市名校2021-2022学年中考冲刺卷数学试题含解析,共23页。试卷主要包含了在一组数据等内容,欢迎下载使用。
贵州省遵义市2021-2022学年中考数学模试卷含解析: 这是一份贵州省遵义市2021-2022学年中考数学模试卷含解析,共23页。试卷主要包含了已知等内容,欢迎下载使用。