2021-2022学年北京市楼梓庄中学中考数学猜题卷含解析
展开这是一份2021-2022学年北京市楼梓庄中学中考数学猜题卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,-5的倒数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )
A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC
2.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是( )
A. B. C. D.
3.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为( )
A.115° B.120° C.125° D.130°
4.一元二次方程x2+x﹣2=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
5.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为
A.6 B.8 C.10 D.12
6.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )
A.(1,1) B.(2,1) C.(2,2) D.(3,1)
7.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )
A.(0,) B.(,0) C.(0,2) D.(2,0)
8.-5的倒数是
A. B.5 C.- D.-5
9.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
10.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )
A. B. C. D.
11.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )
A. B. C. D.
12.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )
A.4 B.4 C.6 D.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:4x2﹣36=___________.
14.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
15.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
16.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.
17.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为______.
18.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.
20.(6分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.
21.(6分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
收集数据:
30
60
81
50
40
110
130
146
90
100
60
81
120
140
70
81
10
20
100
81
整理数据:
课外阅读平均时间x(min)
0≤x<40
40≤x<80
80≤x<120
120≤x<160
等级
D
C
B
A
人数
3
a
8
b
分析数据:
平均数
中位数
众数
80
m
n
请根据以上提供的信息,解答下列问题:
(1)填空:a= ,b= ;m= ,n= ;
(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
22.(8分)已知:如图,在矩形纸片ABCD中,,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF.
的长为多少;
求AE的长;
在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.
23.(8分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,.
(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出时,的取值范围;
(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由.
24.(10分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.
(1)求证:AB是☉O的切线;
(2)若∠A=60°,DF=,求☉O的直径BC的长.
25.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.
求m和b的值;直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.
①若点P在线段DA上,且△ACP的面积为10,求t的值;
②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.
26.(12分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)
27.(12分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;
【详解】
A正确;理由:
在△ABD和△ACD中,
∵∠1=∠2,AD=AD,∠ADB=∠ADC,
∴△ABD≌△ACD(ASA);
B正确;理由:
在△ABD和△ACD中,
∵∠1=∠2,∠B=∠C,AD=AD
∴△ABD≌△ACD(AAS);
C正确;理由:
在△ABD和△ACD中,
∵AB=AC,∠1=∠2,AD=AD,
∴△ABD≌△ACD(SAS);
D不正确,由这些条件不能判定三角形全等;
故选:D.
【点睛】
本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.
2、C
【解析】
根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
【详解】
∵△ABC为等边三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,
∴,即,
∴y=- x2+x.
故选C.
【点睛】
考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
3、C
【解析】
分析:
由已知条件易得∠AEB=70°,由此可得∠DEB=110°,结合折叠的性质可得∠DEF=55°,则由AD∥BC可得∠EFC=125°,再由折叠的性质即可得到∠EFC′=125°.
详解:
∵在△ABE中,∠A=90°,∠ABE=20°,
∴∠AEB=70°,
∴∠DEB=180°-70°=110°,
∵点D沿EF折叠后与点B重合,
∴∠DEF=∠BEF=∠DEB=55°,
∵在矩形ABCD中,AD∥BC,
∴∠DEF+∠EFC=180°,
∴∠EFC=180°-55°=125°,
∴由折叠的性质可得∠EFC′=∠EFC=125°.
故选C.
点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.
4、A
【解析】
∵∆=12-4×1×(-2)=9>0,
∴方程有两个不相等的实数根.
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
5、C
【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【详解】
连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.
故选C.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
6、B
【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.
【详解】
解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:
∴棋子“炮”的坐标为(2,1),
故答案为:B.
【点睛】
本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
7、A
【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
【详解】
如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OA×OB,
即OC2=1×3=3,
解得:OC=或− (负数舍去),
故C点的坐标为(0, ).
故答案选:A.
【点睛】
本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
8、C
【解析】
若两个数的乘积是1,我们就称这两个数互为倒数.
【详解】
解:5的倒数是.
故选C.
9、C
【解析】
解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
10、D
【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故选D.
点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.
11、C
【解析】
根据A点坐标即可建立平面直角坐标.
【详解】
解:由A(0,2),B(1,1)可知原点的位置,
建立平面直角坐标系,如图,
∴C(2,-1)
故选:C.
【点睛】
本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
12、B
【解析】
由已知条件可得,可得出,可求出AC的长.
【详解】
解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,
故选B.
【点睛】
本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、4(x+3)(x﹣3)
【解析】
分析:首先提取公因式4,然后再利用平方差公式进行因式分解.
详解:原式=.
点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.
14、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
【点睛】
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
15、
【解析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC=AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC=.
故答案是:.
【点睛】
考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
16、4cm.
【解析】
由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.
【详解】
由题意知OD⊥AB,交AB于点E,
∵AB=16cm,
∴BC=AB=×16=8cm,
在Rt△OBE中,
∵OB=10cm,BC=8cm,
∴OC=(cm),
∴CD=OD-OC=10-6=4(cm)
故答案为4cm.
【点睛】
本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.
17、1或1﹣2
【解析】
当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值.
【详解】
解:如图1所示:
由翻折的性质可知PF=CF=1,
∵ABFE为正方形,边长为2,
∴AF=2.
∴PA=1﹣2.
如图2所示:
由翻折的性质可知PF=FC=1.
∵ABFE为正方形,
∴BE为AF的垂直平分线.
∴AP=PF=1.
故答案为:1或1﹣2.
【点睛】
本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.
18、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2),见解析.
【解析】
(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;
(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.
【详解】
解:(1)∵四只鞋子中右脚鞋有2只,
∴随手拿出一只,恰好是右脚鞋的概率为=,
故答案为:;
(2)画树状图如下:
共有12种等可能的结果,其中两只恰好为一双的情况有4种,
∴拿出两只,恰好为一双的概率为=.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
20、证明见解析
【解析】
分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.
详解:证明:在▱ABCD中,,
,又 ,≌,
,,又,
四边形AGCH为平行四边形, .
点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.
21、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本
【解析】
(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;
(2)达标的学生人数=总人数×达标率,依此即可求解;
(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.
【详解】
解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;
(2)(人).
答:估计达标的学生有300人;
(3)80×52÷260=16(本).
答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.
【点睛】
本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.
22、(1);(2)的长为;(1)存在,画出点P的位置如图1见解析,的最小值为 .
【解析】
(1)根据勾股定理解答即可;
(2)设AE=x,根据全等三角形的性质和勾股定理解答即可;
(1)延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可.
【详解】
(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.
故答案为5;
(2)设AE=x.
∵AB=4,∴BE=4﹣x,在矩形ABCD中,根据折叠的性质知:
Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的长为;
(1)存在,如图1,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:PC=PG,∴PF+PC=GF.
过点F作FH⊥BC,交BC于点H,则有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根据勾股定理,得:GF,即PF+PC的最小值为.
【点睛】
本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.
23、(1); ;(2)或;(3)存在,或或或.
【解析】
(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;
(2)利用图象直接得出结论;
(3)分、、三种情况讨论,即可得出结论.
【详解】
(1)一次函数与反比例函数,相交于点,,
∴把代入得:,
∴,
∴反比例函数解析式为,
把代入得:,
∴,
∴点C的坐标为,
把,代入得:,
解得:,
∴一次函数解析式为;
(2)根据函数图像可知:
当或时,一次函数的图象在反比例函数图象的上方,
∴当或时,;
(3)存在或或或时,为等腰三角形,理由如下:
过作轴,交轴于,
∵直线与轴交于点,
∴令得,,
∴点A的坐标为,
∵点B的坐标为,
∴点D的坐标为,
∴,
①当时,则,
,
∴点P的坐标为:、;
②当时,
是等腰三角形,,
平分,
,
∵点D的坐标为,
∴点P的坐标为,即;
③当时,如图:
设,
则,
在中,,,,
由勾股定理得:
,
,
解得:,
,
∴点P的坐标为,即,
综上所述,当或或或时,为等腰三角形.
【点睛】
本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.
24、(1)证明过程见解析;(2)
【解析】
(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.
【详解】
(1)∵CB=CD
∴∠CBD=∠CDB
又∵∠CEB=90°
∴∠CBD+∠BCE=∠CDE+∠DCE
∴∠BCE=∠DCE且∠BCD=2∠ABD
∴∠ABD=∠BCE
∴∠CBD+∠ABD=∠CBD+∠BCE=90°
∴CB⊥AB垂足为B
又∵CB为直径
∴AB是⊙O的切线.
(2)∵∠A=60°,DF=
∴在Rt△AFD中得出AF=1
在Rt△BFD中得出DF=3
∵∠ADF=∠ACB ∠A=∠A
∴△ADF∽△ACB
∴
即
解得:CB=
考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定
25、(1)4,5;(2)①7;②4或 或或8.
【解析】
分别令可得b和m的值;
根据的面积公式列等式可得t的值;
存在,分三种情况:
当时,如图1,当时,如图2,当时,如图3,分别求t的值即可.
【详解】
把点代入直线中得:,
点,
直线过点C,
,;
由题意得:,
中,当时,,
,
,
中,当时,,
,
,
,
的面积为10,
,
,
则t的值7秒;
存在,分三种情况:
当时,如图1,过C作于E,
,
,
即;
当时,如图2,
,
,
;
当时,如图3,
,
,
,
,
,
,即;
综上,当秒或秒或秒或8秒时,为等腰三角形.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.
26、此车没有超过了该路段16m/s的限制速度.
【解析】
分析:根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.
详解:由题意得:∠DCA=60°,∠DCB=45°,
在Rt△CDB中,tan∠DCB=,
解得:DB=200,
在Rt△CDA中,tan∠DCA=,
解得:DA=200,
∴AB=DA﹣DB=200﹣200≈146米,
轿车速度,
答:此车没有超过了该路段16m/s的限制速度.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.
27、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
相关试卷
这是一份北京市楼梓庄中学2023-2024学年九年级数学第一学期期末经典试题含答案,共9页。试卷主要包含了如图,中,,下列命题是真命题的个数是,方程的解是,如图,,,以下结论成立的是等内容,欢迎下载使用。
这是一份2023-2024学年北京市楼梓庄中学数学八年级第一学期期末质量检测试题含答案,共7页。试卷主要包含了下列计算中正确的是,下列图案中,是轴对称图形的是,下列各式中是分式的是,已知P1,下列式子,,,,不是分式的有等内容,欢迎下载使用。
这是一份2022-2023学年北京市楼梓庄中学七下数学期末学业质量监测模拟试题含答案,共7页。