2021-2022学年安徽省阜阳太和县联考中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.分式有意义,则x的取值范围是( )
A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7
2.下列运算正确的是( )
A.x2•x3=x6 B.x2+x2=2x4
C.(﹣2x)2=4x2 D.( a+b)2=a2+b2
3.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
A. B. C. D.
4.若△÷,则“△”可能是( )
A. B. C. D.
5.已知一个正n边形的每个内角为120°,则这个多边形的对角线有( )
A.5条 B.6条 C.8条 D.9条
6.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )
A.64×105 B.6.4×105 C.6.4×106 D.6.4×107
7.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是( )
A.3 B.﹣ C.﹣3 D.﹣6
8.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有
A.2个 B.3个 C.4个 D.5个
9.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4
C. D.(a2b)3=a5b3
10.抛物线经过第一、三、四象限,则抛物线的顶点必在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )
A. B. C. D.
12.方程x2+2x﹣3=0的解是( )
A.x1=1,x2=3 B.x1=1,x2=﹣3
C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm
14.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.
15.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
16.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)
17.等腰梯形是__________对称图形.
18.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?
20.(6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:
(1)本次抽测的男生人数为 ,图①中m的值为 ;
(2)求本次抽测的这组数据的平均数、众数和中位数;
(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.
21.(6分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:
可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______;
画出绕点B逆时针旋转的图形;
在中,点C所形成的路径的长度为______.
22.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
23.(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).
(1)求抛物线F的解析式;
(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
①判断△AA′B的形状,并说明理由;
②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
24.(10分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.
(1)求证:四边形BCFE是平行四边形;
(2)当∠ACB=60°时,求证:四边形BCFE是菱形.
25.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
(2)先化简,再求值:÷(2+),其中a= .
26.(12分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).
27.(12分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
直接利用分式有意义则分母不为零进而得出答案.
【详解】
解:分式有意义,
则x﹣1≠0,
解得:x≠1.
故选:A.
【点睛】
此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
2、C
【解析】
根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
【详解】
A、x2•x3=x5,故A选项错误;
B、x2+x2=2x2,故B选项错误;
C、(﹣2x)2=4x2,故C选项正确;
D、( a+b)2=a2+2ab+b2,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
3、B
【解析】
解:根据题意可得:
∴反比例函数处于二、四象限,则在每个象限内为增函数,
且当x<0时y>0,当x>0时,y<0,
∴<<.
4、A
【解析】
直接利用分式的乘除运算法则计算得出答案.
【详解】
。
故选:A.
【点睛】
考查了分式的乘除运算,正确分解因式再化简是解题关键.
5、D
【解析】
多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.
【详解】
解:∵多边形的每一个内角都等于120°,
∴每个外角是60度,
则多边形的边数为360°÷60°=6,
则该多边形有6个顶点,
则此多边形从一个顶点出发的对角线共有6﹣3=3条.
∴这个多边形的对角线有(6×3)=9条,
故选:D.
【点睛】
本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.
6、C
【解析】
由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:6400000=6.4×106,
故选C.
点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、C
【解析】
如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
【详解】
解:如图,作CH⊥y轴于H.
由题意B(0,2),
∵
∴CH=1,
∵tan∠BOC=
∴OH=3,
∴C(﹣1,3),
把点C(﹣1,3)代入,得到k2=﹣3,
故选C.
【点睛】
本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
8、D
【解析】
试题分析:①如图,∵抛物线开口方向向下,∴a<1.
∵对称轴x,∴<1.∴ab>1.故①正确.
②如图,当x=1时,y<1,即a+b+c<1.故②正确.
③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
④如图,当x=﹣1时,y>1,即a﹣b+c>1,
∵抛物线与y轴交于正半轴,∴c>1.
∵b<1,∴c﹣b>1.
∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
⑤如图,对称轴,则.故⑤正确.
综上所述,正确的结论是①②③④⑤,共5个.故选D.
9、B
【解析】
由整数指数幂和分式的运算的法则计算可得答案.
【详解】
A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
C项,根据分式的加法法则可得:,故C项错误;
D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
故本题正确答案为B.
【点睛】
幂的运算法则:
(1) 同底数幂的乘法: (m、n都是正整数)
(2)幂的乘方:(m、n都是正整数)
(3)积的乘方: (n是正整数)
(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
(5)零次幂:(a≠0)
(6) 负整数次幂: (a≠0, p是正整数).
10、A
【解析】
根据二次函数图象所在的象限大致画出图形,由此即可得出结论.
【详解】
∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.
故选A.
【点睛】
本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.
11、D
【解析】
先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.
【详解】
任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.
【点睛】
本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.
12、B
【解析】
本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.
【详解】
x2+2x-3=0,
即(x+3)(x-1)=0,
∴x1=1,x2=﹣3
故选:B.
【点睛】
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:×4=.
考点:菱形的性质.
14、x≥1
【解析】
把y=2代入y=x+1,得x=1,
∴点P的坐标为(1,2),
根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,
因而不等式x+1≥mx+n的解集是:x≥1,
故答案为x≥1.
【点睛】
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
15、y=﹣1x+1.
【解析】
由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.
【详解】
∵点P(1,2)关于x轴的对称点为P′,
∴P′(1,﹣2),
∵P′在直线y=kx+3上,
∴﹣2=k+3,解得:k=﹣1,
则y=﹣1x+3,
∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.
故答案为y=﹣1x+1.
考点:一次函数图象与几何变换.
16、①②③
【解析】
(1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG=S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.
【详解】
(1)∵四边形ABCD是菱形,BD=AB,
∴AB=BD=BC=DC=DA,
∴△ABD和△CBD都是等边三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,
∴△AED≌△DFB,即结论①正确;
(2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,
∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
∴点B、C、D、G四点共圆,
∴∠CDN=∠CBM,
如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,
∴∠CDN=∠CBM=90°,
又∵CB=CD,
∴△CBM≌△CDN,
∴S四边形BCDG=S四边形CMGN=2S△CGN,
∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
∴GN=CG,CN=CG,
∴S△CGN=CG2,
∴S四边形BCDG=2S△CGN,=CG2,即结论②是正确的;
(3)如下图,过点F作FK∥AB交DE于点K,
∴△DFK∽△DAE,△GFK∽△GBE,
∴,,
∵AF=2DF,
∴,
∵AB=AD,AE=DF,AF=2DF,
∴BE=2AE,
∴,
∴BG=6FG,即结论③成立.
综上所述,本题中正确的结论是:
故答案为①②③
点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.
17、轴
【解析】
根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.
【详解】
画图如下:
结合图形,根据轴对称的定义及等腰梯形的特征可知,
等腰梯形是轴对称图形.
故答案为:轴
【点睛】
本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.
18、1.
【解析】
分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.
详解:∵==,解得:旗杆的高度=×30=1.
故答案为1.
点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、人
【解析】
解:设原计划有x人参加了这次植树活动
依题意得:
解得 x=30人
经检验x=30是原方程式的根
实际参加了这次植树活动1.5x=45人
答实际有45人参加了这次植树活动.
20、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.
【解析】
分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;
(Ⅱ)根据平均数、众数、中位数的定义求解可得;
(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.
详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.
故答案为50、1;
(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;
(Ⅲ)×350=2.
答:估计该校350名九年级男生中有2人体能达标.
点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
21、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3).
【解析】
(1)△ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到△DEF;
按照旋转中心、旋转角度以及旋转方向,即可得到△ABC绕点B逆时针旋转 的图形△ ;
依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可.
【详解】
解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折.
(2)分别将点C、A绕点B逆时针旋转得到点 、 ,如图所示,△即为所求;
(3)点C所形成的路径的长为:.
故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)π.
.
【点睛】
本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.
22、路灯高CD为5.1米.
【解析】
根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
【详解】
设CD长为x米,
∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
∴MA∥CD∥BN,
∴EC=CD=x米,
∴△ABN∽△ACD,
∴=,即,
解得:x=5.1.
经检验,x=5.1是原方程的解,
∴路灯高CD为5.1米.
【点睛】
本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
23、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
【解析】
(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
【详解】
(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
∴,解得:,
∴抛物线F的解析式为y=x1+x.
(1)将y=x+m代入y=x1+x,得:x1=m,
解得:x1=﹣,x1=,
∴y1=﹣+m,y1=+m,
∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
(3)∵m=,
∴点A的坐标为(﹣,),点B的坐标为(,1).
∵点A′是点A关于原点O的对称点,
∴点A′的坐标为(,﹣).
①△AA′B为等边三角形,理由如下:
∵A(﹣,),B(,1),A′(,﹣),
∴AA′=,AB=,A′B=,
∴AA′=AB=A′B,
∴△AA′B为等边三角形.
②∵△AA′B为等边三角形,
∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
(i)当A′B为对角线时,有,
解得,
∴点P的坐标为(1,);
(ii)当AB为对角线时,有,
解得:,
∴点P的坐标为(﹣,);
(iii)当AA′为对角线时,有,
解得:,
∴点P的坐标为(﹣,﹣1).
综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
24、(1)见解析;(2)见解析
【解析】
(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.
(2)根据菱形的判定证明即可.
【详解】
(1)证明::∵D.E为AB,AC中点
∴DE为△ABC的中位线,DE=BC,
∴DE∥BC,
即EF∥BC,
∵EF=BC,
∴四边形BCEF为平行四边形.
(2)∵四边形BCEF为平行四边形,
∵∠ACB=60°,
∴BC=CE=BE,
∴四边形BCFE是菱形.
【点睛】
本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25、(1)5+;(2)
【解析】
试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;
(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.
试题解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;
(2)原式==,
当a=时,原式==.
26、(1)1;(2).
【解析】
(1)由平行线截线段成比例求得AE的长度;
(2)利用平面向量的三角形法则解答.
【详解】
(1)如图,
∵DE∥BC,且DE=BC,
∴.
又AC=6,
∴AE=1.
(2)∵,,
∴.
又DE∥BC,DE=BC,
∴
【点睛】
考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.
27、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
【解析】
(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
【详解】
(1)证明:过F作FH⊥BE于H点,
在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
所以四边形BHFC为矩形,
∴CF=BH,
∵BF=EF,FH⊥BE,
∴H为BE中点,
∴BE=2BH,
∴BE=2CF;
(2)四边形BFGN是菱形.
证明:
∵将线段EF绕点F顺时针旋转90°得FG,
∴EF=GF,∠GFE=90°,
∴∠EFH+∠BFH+∠GFB=90°
∵BN∥FG,
∴∠NBF+∠GFB=180°,
∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
∵∠ABC=90°,
∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
由BHFC是矩形可得HF=BC,
∵BC=AB,∴HF=AB,
在△ABN和△HFE中,,
∴△ABN≌△HFE,
∴NB=EF,
∵EF=GF,
∴NB=GF,
又∵NB∥GF,
∴NBFG是平行四边形,
∵EF=BF,∴NB=BF,
∴平行四边NBFG是菱形.
点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
2024年安徽省阜阳市太和县中考数学二模试卷(含解析): 这是一份2024年安徽省阜阳市太和县中考数学二模试卷(含解析),共29页。试卷主要包含了填空题等内容,欢迎下载使用。
2024年安徽省阜阳市太和县中考二模数学试题: 这是一份2024年安徽省阜阳市太和县中考二模数学试题,共4页。试卷主要包含了请将各题答案填写在答题卡上,如图,该几何体的俯视图是等内容,欢迎下载使用。
2023年安徽省阜阳市太和县中考数学二模试卷(含解析): 这是一份2023年安徽省阜阳市太和县中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。