终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年福建省龙岩市新罗区龙岩市第二中学中考数学模拟预测试卷含解析

    立即下载
    加入资料篮
    2021-2022学年福建省龙岩市新罗区龙岩市第二中学中考数学模拟预测试卷含解析第1页
    2021-2022学年福建省龙岩市新罗区龙岩市第二中学中考数学模拟预测试卷含解析第2页
    2021-2022学年福建省龙岩市新罗区龙岩市第二中学中考数学模拟预测试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省龙岩市新罗区龙岩市第二中学中考数学模拟预测试卷含解析

    展开

    这是一份2021-2022学年福建省龙岩市新罗区龙岩市第二中学中考数学模拟预测试卷含解析,共19页。试卷主要包含了如图,内接于,若,则,运用乘法公式计算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.到三角形三个顶点的距离相等的点是三角形( )的交点.
    A.三个内角平分线 B.三边垂直平分线
    C.三条中线 D.三条高
    2.下列美丽的壮锦图案是中心对称图形的是(  )
    A. B. C. D.
    3.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是(  )

    A. B.
    C. D.
    4.下列各曲线中表示y是x的函数的是(  )
    A. B. C. D.
    5.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度(  )
    A.1 B.5 C.1或5 D.2或4
    6.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
    A.42,41 B.41,42 C.41,41 D.42,45
    7.如图,内接于,若,则  

    A. B. C. D.
    8.运用乘法公式计算(3﹣a)(a+3)的结果是(  )
    A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+9
    9.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )

    A.仅有甲和乙相同 B.仅有甲和丙相同
    C.仅有乙和丙相同 D.甲、乙、丙都相同
    10.下列手机手势解锁图案中,是轴对称图形的是( )
    A. B. C. D.
    11.两个有理数的和为零,则这两个数一定是(  )
    A.都是零 B.至少有一个是零
    C.一个是正数,一个是负数 D.互为相反数
    12.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
    如图所示,请根据所学知识计算:圆形木材的直径AC是(  )

    A.13寸 B.20寸 C.26寸 D.28寸
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.

    14.如图,点 A、B、C 在⊙O 上,⊙O 半径为 1cm,∠ACB=30°,则的长是________.

    15.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.

    16.计算的结果是_____
    17.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.

    18.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.

    20.(6分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.

    (1)求证:∠F=∠B;
    (2)若AB=12,BG=10,求AF的长.
    21.(6分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.

    22.(8分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.
    (1)求购买一个A种品牌、一个B种品牌的足球各需多少元.
    (2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?
    (3)请你求出学校在第二次购买活动中最多需要多少资金?
    23.(8分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
    (1)求甲、乙两队合作完成这项工程需要多少天?
    (2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
    24.(10分)计算.
    25.(10分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:
    (1)求购进的第一批文化衫的件数;
    (2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?
    26.(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.
    (1)求证:四边形ABDE是平行四边形;
    (2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.

    27.(12分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
    求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.
    解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
    故选B.
    点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.
    2、A
    【解析】
    【分析】根据中心对称图形的定义逐项进行判断即可得.
    【详解】A、是中心对称图形,故此选项正确;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误,
    故选A.
    【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    3、D
    【解析】
    根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:
    几何体的左视图是:

    故选D.
    4、D
    【解析】
    根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.
    故选D.
    5、C
    【解析】
    由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
    【详解】
    ∵点C是劣弧AB的中点,
    ∴OC垂直平分AB,
    ∴DA=DB=3,
    ∴OD=,
    若△POC为直角三角形,只能是∠OPC=90°,
    则△POD∽△CPD,
    ∴,
    ∴PD2=4×1=4,
    ∴PD=2,
    ∴PB=3﹣2=1,
    根据对称性得,
    当P在OC的左侧时,PB=3+2=5,
    ∴PB的长度为1或5.

    故选C.
    【点睛】
    考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
    6、C
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
    所以本题这组数据的中位数是 1,众数是 1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    7、B
    【解析】
    根据圆周角定理求出,根据三角形内角和定理计算即可.
    【详解】
    解:由圆周角定理得,,


    故选:B.
    【点睛】
    本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
    8、C
    【解析】
    根据平方差公式计算可得.
    【详解】
    解:(3﹣a)(a+3)=32﹣a2=9﹣a2,
    故选C.
    【点睛】
    本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.
    9、B
    【解析】
    试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.
    考点:由三视图判断几何体;简单组合体的三视图.
    10、D
    【解析】
    根据轴对称图形与中心对称图形的定义进行判断.
    【详解】
    A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
    11、D
    【解析】
    解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.
    12、C
    【解析】
    分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.
    详解:设⊙O的半径为r.
    在Rt△ADO中,AD=5,OD=r-1,OA=r,
    则有r2=52+(r-1)2,
    解得r=13,
    ∴⊙O的直径为26寸,
    故选C.
    点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、40°
    【解析】
    根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
    【详解】
    根据旋转的性质,可得:AB=AD,∠BAD=100°,
    ∴∠B=∠ADB=×(180°−100°)=40°.
    故填:40°.
    【点睛】
    本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
    14、.
    【解析】
    根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.
    【详解】
    ∵∠ACB=30°,
    ∴∠AOB=60°,
    ∵OA=1cm,
    ∴的长=cm.
    故答案为:.
    【点睛】
    本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=.
    15、 (4,2),
    【解析】
    由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
    【详解】
    解:点、、在直线上,的横坐标是1,

    点,,在直线上,
    ,,
    ,,
    第1个正方形的面积为:;

    ,,,
    第2个正方形的面积为:;

    ,,
    第3个正方形的面积为:;

    第n个正方形的面积为:.
    故答案为,.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
    16、
    【解析】
    【分析】根据二次根式的运算法则进行计算即可求出答案.
    【详解】
    =
    =,
    故答案为.
    【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.
    17、1
    【解析】
    分析: 由PD−PC=PD−PG≤DG,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG=1.
    详解: 在BC上取一点G,使得BG=1,如图,

    ∵,,
    ∴,
    ∵∠PBG=∠PBC,
    ∴△PBG∽△CBP,
    ∴,
    ∴PG=PC,
    当点P在DG的延长线上时,PD−PC的值最大,最大值为DG==1.
    故答案为1
    点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
    18、1
    【解析】
    设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.
    【详解】
    解:设反比例函数解析式为y=,
    根据题意得k=3×(﹣4)=﹣2m,
    解得m=1.
    故答案为1.
    考点:反比例函数图象上点的坐标特征.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
    【解析】
    【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
    (2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
    【详解】(1)当x=1时,n=﹣×1+4=1,
    ∴点B的坐标为(1,1).
    ∵反比例函数y=过点B(1,1),
    ∴k=1×1=1;
    (2)∵k=1>0,
    ∴当x>0时,y随x值增大而减小,
    ∴当2≤x≤1时,1≤y≤2.
    【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
    20、(1)见解析;(2).
    【解析】
    (1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
    (2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:∵,
    ∴.
    ∴∠GAB=∠B,
    ∵AF是⊙O的切线,
    ∴AF⊥AO.
    ∴∠GAB+∠GAF=90°.
    ∵OE⊥AC,
    ∴∠F+∠GAF=90°.
    ∴∠F=∠GAB,
    ∴∠F=∠B;
    (2)解:连接OG.
    ∵∠GAB=∠B,
    ∴AG=BG.
    ∵OA=OB=6,
    ∴OG⊥AB.
    ∴,
    ∵∠FAO=∠BOG=90°,∠F=∠B,
    ∴△FAO∽△BOG,
    ∴.
    ∴.

    【点睛】
    本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    21、(1)详见解析;(2)6
    【解析】
    (1)连接CD,证明即可得到结论;
    (2)设圆O的半径为r,在Rt△BDO中,运用勾股定理即可求出结论.
    【详解】
    (1)证明:连接CD,





    .
    (2)设圆O的半径为,,
    设.
    【点睛】
    本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.
    22、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元.
    【解析】
    试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50-m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.
    试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元
    ,解得
    (2) 设第二次购买A种足球m个,则购买B种足球(50-m)个
    ,解得25≤m≤27
    ∵m为整数 ∴m=25、26、27
    (3) ∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72
    ∴当购买B种足球越多时,费用越高 此时25×54+25×72=3150(元)
    23、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天
    【解析】
    (1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;
    (2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.
    【详解】
    (1)设甲、乙两队合作完成这项工程需要x天
    根据题意得,,
    解得 x=36,
    经检验x=36是分式方程的解,
    答:甲、乙两队合作完成这项工程需要36天,
    (2)
    设甲、乙需要合作y天,根据题意得,

    解得y≤7
    答:甲、乙两队至多要合作7天.
    【点睛】
    本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
    24、
    【解析】
    分析:先计算,再做除法,结果化为整式或最简分式.
    详解:




    .
    点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.
    25、(1)50件;(2)120元.
    【解析】
    (1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.
    【详解】
    解:(1)设第一批购进文化衫x件,
    根据题意得: +10=,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    答:第一批购进文化衫50件;
    (2)第二批购进文化衫(1+40%)×50=70(件),
    设该服装店销售该品牌文化衫每件的售价为y元,
    根据题意得:(50+70)y﹣4000﹣6300≥4100,
    解得:y≥120,
    答:该服装店销售该品牌文化衫每件最低售价为120元.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
    26、 (1)见解析;(2)2.
    【解析】
    (1)四边形ABCD是平行四边形,由平行四边形的性质,可得AB=DE, AB//DE ,则四边形ABDE是平行四边形;
    (2)因为AD=DE=1,则AD=AB=1,四边形ABCD是菱形,由菱形的性质及解直角三角形可得AO=AB⋅sin∠ABO=2,BO=AB⋅cos∠ABO=2, BD=1 ,则AE=BD,利用勾股定理可得OE.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD.
    ∵DE=CD,
    ∴AB=DE.
    ∴四边形ABDE是平行四边形;
    (2)∵AD=DE=1,
    ∴AD=AB=1.
    ∴▱ABCD是菱形,
    ∴AB=BC,AC⊥BD,,.
    又∵∠ABC=60°,
    ∴∠ABO=30°.
    在Rt△ABO中,,.
    ∴.
    ∵四边形ABDE是平行四边形,
    ∴AE∥BD,.
    又∵AC⊥BD,
    ∴AC⊥AE.
    在Rt△AOE中,.
    【点睛】
    此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.
    27、 (1)y=,y=−x−1;(2)x

    相关试卷

    福建省龙岩市永定区2021-2022学年中考数学模拟预测题含解析:

    这是一份福建省龙岩市永定区2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如图1是一座立交桥的示意图,已知,则的值为等内容,欢迎下载使用。

    福建省龙岩市永定区金丰片2021-2022学年中考数学模拟预测题含解析:

    这是一份福建省龙岩市永定区金丰片2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了点P等内容,欢迎下载使用。

    福建省龙岩市上杭四中学2021-2022学年中考数学模拟精编试卷含解析:

    这是一份福建省龙岩市上杭四中学2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了分式有意义,则x的取值范围是,下列说法中,正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map