终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年福建省泉州市晋江市中考一模数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年福建省泉州市晋江市中考一模数学试题含解析第1页
    2021-2022学年福建省泉州市晋江市中考一模数学试题含解析第2页
    2021-2022学年福建省泉州市晋江市中考一模数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省泉州市晋江市中考一模数学试题含解析

    展开

    这是一份2021-2022学年福建省泉州市晋江市中考一模数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下面运算正确的是(  )
    A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
    2.如图是正方体的表面展开图,则与“前”字相对的字是(  )

    A.认 B.真 C.复 D.习
    3.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有(  )

    A.1 B.2 C.3 D.4
    4.若实数m满足,则下列对m值的估计正确的是(  )
    A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<2
    5.下列各式中,正确的是(  )
    A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
    6.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+by2 时,x的取值范围.

    19.(8分)先化简,再求值:,其中满足.
    20.(8分)(1)计算: ;
    (2)解不等式组 :
    21.(8分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
    (1)求证:BC是⊙O的切线;
    (2)已知AD=3,CD=2,求BC的长.

    22.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
    特例探索
    (1)如图1,当∠ABE=45°,c=时,a= ,b= ;
    如图2,当∠ABE=10°,c=4时,a= ,b= ;

    归纳证明
    (2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;
    拓展应用
    (1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=1.求AF的长.

    23.(12分)某企业信息部进行市场调研发现:
    信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
    x(万元)
    1
    2
    2.5
    3
    5
    yA(万元)
    0.4
    0.8
    1
    1.2
    2
    信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
    (1)求出yB与x的函数关系式;
    (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
    (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
    24.如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
    (1)求证:∠CBE=∠F;
    (2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
    【详解】
    解:A,,故此选项错误;
    B,,故此选项错误;
    C,,故此选项错误;
    D,,故此选项正确.
    所以D选项是正确的.
    【点睛】
    灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.
    2、B
    【解析】
    分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
    详解:由图形可知,与“前”字相对的字是“真”.
    故选B.
    点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
    3、C
    【解析】
    ①图中有3个等腰直角三角形,故结论错误;
    ②根据ASA证明即可,结论正确;
    ③利用面积法证明即可,结论正确;
    ④利用三角形的中线的性质即可证明,结论正确.
    【详解】
    ∵CE⊥AB,∠ACE=45°,
    ∴△ACE是等腰直角三角形,
    ∵AF=CF,
    ∴EF=AF=CF,
    ∴△AEF,△EFC都是等腰直角三角形,
    ∴图中共有3个等腰直角三角形,故①错误,
    ∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
    ∴∠EAH=∠BCE,
    ∵AE=EC,∠AEH=∠CEB=90°,
    ∴△AHE≌△CBE,故②正确,
    ∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
    ∴BC•AD=CE2,故③正确,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC,
    ∴S△ABC=2S△ADC,
    ∵AF=FC,
    ∴S△ADC=2S△ADF,
    ∴S△ABC=4S△ADF.
    故选C.
    【点睛】
    本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
    4、A
    【解析】
    试题解析:∵,
    ∴m2+2+=0,
    ∴m2+2=-,
    ∴方程的解可以看作是函数y=m2+2与函数y=-,
    作函数图象如图,
    在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,
    当m=-2时y=m2+2=4+2=6,y=-=-=2,
    ∵6>2,
    ∴交点横坐标大于-2,
    当m=-1时,y=m2+2=1+2=3,y=-=-=4,
    ∵3<4,
    ∴交点横坐标小于-1,
    ∴-2<m<-1.
    故选A.

    考点:1.二次函数的图象;2.反比例函数的图象.
    5、B
    【解析】
    A.括号前是负号去括号都变号;
    B负次方就是该数次方后的倒数,再根据前面两个负号为正;
    C. 两个负号为正;
    D.三次根号和二次根号的算法.
    【详解】
    A选项,﹣(x﹣y)=﹣x+y,故A错误;
    B选项, ﹣(﹣2)﹣1=,故B正确;
    C选项,﹣,故C错误;
    D选项,22,故D错误.
    【点睛】
    本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
    6、D
    【解析】
    利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.
    【详解】
    ∵抛物线开口向下,
    ∴a<0,
    而抛物线的对称轴为直线x=-=1,即b=-2a,
    ∴3a+b=3a-2a=a<0,所以①正确;
    ∵2≤c≤3,
    而c=-3a,
    ∴2≤-3a≤3,
    ∴-1≤a≤-,所以②正确;
    ∵抛物线的顶点坐标(1,n),
    ∴x=1时,二次函数值有最大值n,
    ∴a+b+c≥am2+bm+c,
    即a+b≥am2+bm,所以③正确;
    ∵抛物线的顶点坐标(1,n),
    ∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
    ∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
    故选D.
    【点睛】
    本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
    7、C
    【解析】
    解:根据定义,得

    解得:.
    故选C.
    8、D
    【解析】
    分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
    详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
    B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
    C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
    D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
    故选D.
    点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
    9、C
    【解析】
    根据题意,结合图形,由平移的概念求解.
    【详解】
    由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.
    【点睛】
    本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.
    10、B
    【解析】
    根据两个负数,绝对值大的反而小比较.
    【详解】
    解:∵− >−1>− >−π,
    ∴负数中最大的是−.
    故选:B.
    【点睛】
    本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、或2
    【解析】
    由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.
    【详解】
    由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x
    当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;
    当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;
    综上BF的长度可以为或2.
    【点睛】
    本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.
    12、1.
    【解析】
    试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
    则AD=1,BF=BC+CF=BC+1,DF=AC,
    又∵AB+BC+AC=1,
    ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
    考点:平移的性质.
    13、2
    【解析】
    只要证明△PBC是等腰直角三角形即可解决问题.
    【详解】
    解:∵∠APO=∠BPO=30°,
    ∴∠APB=60°,
    ∵PA=PC=PB,∠APC=30°,
    ∴∠BPC=90°,
    ∴△PBC是等腰直角三角形,
    ∵OA=1,∠APO=30°,
    ∴PA=2OA=2,
    ∴BC=PC=2,
    故答案为2.
    【点睛】
    本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
    14、60.
    【解析】
    首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
    【详解】
    设半圆的圆心为O,连接OE,OA,
    ∵CD=2OC=2BC,
    ∴OC=BC,
    ∵∠ACB=90°,即AC⊥OB,
    ∴OA=BA,
    ∴∠AOC=∠ABC,
    ∵∠BAC=30°,
    ∴∠AOC=∠ABC=60°,
    ∵AE是切线,
    ∴∠AEO=90°,
    ∴∠AEO=∠ACO=90°,
    ∵在Rt△AOE和Rt△AOC中,

    ∴Rt△AOE≌Rt△AOC(HL),
    ∴∠AOE=∠AOC=60°,
    ∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
    ∴点E所对应的量角器上的刻度数是60°,
    故答案为:60.

    【点睛】
    本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
    15、1
    【解析】
    作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
    ∵∠C=90°,AC=BC=6cm,
    ∴△ABC为直角三角形,
    ∴∠A=∠B=45°,
    ∴△APE和△PBD为等腰直角三角形,
    ∴PE=AE=AP=tcm,BD=PD,
    ∴CE=AC﹣AE=(6﹣t)cm,
    ∵四边形PECD为矩形,
    ∴PD=EC=(6﹣t)cm,
    ∴BD=(6﹣t)cm,
    ∴QD=BD﹣BQ=(6﹣1t)cm,
    在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
    在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
    ∵四边形QPCP′为菱形,
    ∴PQ=PC,
    ∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
    ∴t1=1,t1=6(舍去),
    ∴t的值为1.
    故答案为1.

    【点睛】
    此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
    16、
    【解析】
    解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,
    过点M作MF⊥DC于点F,
    ∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
    ∴2MD=AD=CD=2,∠FDM=60°,
    ∴∠FMD=30°,
    ∴FD=MD=1,
    ∴FM=DM×cos30°=,
    ∴,
    ∴A′C=MC﹣MA′=.
    故答案为.

    【点评】
    此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.

    三、解答题(共8题,共72分)
    17、(1)150,(2)36°,(3)1.
    【解析】
    (1)根据图中信息列式计算即可;
    (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
    (3)360°×乒乓球”所占的百分比即可得到结论;
    (4)根据题意计算即可.
    【详解】
    (1)m=21÷14%=150,
    (2)“足球“的人数=150×20%=30人,
    补全上面的条形统计图如图所示;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
    (4)1200×20%=1人,
    答:估计该校约有1名学生最喜爱足球活动.
    故答案为150,36°,1.

    【点睛】
    本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
    18、(1)y1=-2x+4,y2=-;(2)x

    相关试卷

    福建省泉州市晋江市重点中学2022年中考二模数学试题含解析:

    这是一份福建省泉州市晋江市重点中学2022年中考二模数学试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,在2和3之间的是,下列各式中,正确的是,已知,一、单选题等内容,欢迎下载使用。

    福建省晋江市2021-2022学年中考数学押题试卷含解析:

    这是一份福建省晋江市2021-2022学年中考数学押题试卷含解析,共22页。试卷主要包含了下列运算结果正确的是,二次函数y=﹣等内容,欢迎下载使用。

    2022届福建省泉州市晋江市中考猜题数学试卷含解析:

    这是一份2022届福建省泉州市晋江市中考猜题数学试卷含解析,共21页。试卷主要包含了化简÷的结果是,下列各式正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map