2021-2022学年福建厦门重点达标名校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
2.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )
A.①的收入去年和前年相同
B.③的收入所占比例前年的比去年的大
C.去年②的收入为2.8万
D.前年年收入不止①②③三种农作物的收入
3.如图所示的图形,是下面哪个正方体的展开图( )
A. B. C. D.
4.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )
A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0
5.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
中位数
众数
平均数
方差
9.2
9.3
9.1
0.3
A.中位数 B.众数 C.平均数 D.方差
6.在0,-2,5,,-0.3中,负数的个数是( ).
A.1 B.2 C.3 D.4
7.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )
A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC
8.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数(cm)
185
180
185
180
方差
3.6
3.6
7.4
8.1
根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
9.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )
A.2πcm B.4πcm C.6πcm D.8πcm
10.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A. B.1 C. D.
11.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为( )
A.80° B.70° C.60° D.50°
12.把不等式组的解集表示在数轴上,正确的是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
14.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.
甲
乙
丙
丁
7
8
8
7
s2
1
1.2
0.9
1.8
15.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
16.满足的整数x的值是_____.
17.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段 的长为________.
18.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
(1)请求出y关于x的函数关系式;
(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?
(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?
A
B
成本(元/瓶)
50
35
利润(元/瓶)
20
15
20.(6分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?
21.(6分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
22.(8分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD= ;
②若∠BAC=90°(如图3),BC=6,AD= ;
(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.
23.(8分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是 时,求AB的长.
24.(10分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?
25.(10分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.
(1)求证:PB=BC;
(2)试判断四边形BOCD的形状,并说明理由.
26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
(Ⅰ)求二次函数的解析式及点A,B的坐标;
(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.
27.(12分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:根据图象得出相关信息,并对各选项一一进行判断即可.
详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
故选D.
点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
2、C
【解析】
A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
D、前年年收入即为①②③三种农作物的收入,此选项错误,
故选C.
【点睛】
本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
3、D
【解析】
根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
【详解】
A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
故选D.
【点睛】
本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
4、C
【解析】
根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.
【详解】
∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,
∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,
∴k>﹣1,
∵抛物线y=kx2﹣2x﹣1为二次函数,
∴k≠0,
则k的取值范围为k>﹣1且k≠0,
故选C.
【点睛】
本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.
5、A
【解析】
根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.
【详解】
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.
故选A.
点睛:本题主要考查了中位数,关键是掌握中位数定义.
6、B
【解析】
根据负数的定义判断即可
【详解】
解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
故选B.
7、D
【解析】
解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,
∴AE∥BC,故C选项正确,
∴∠EAC=∠C,故B选项正确,
∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,
故选D.
【点睛】
本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.
8、A
【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
∵=>=,
∴从甲和丙中选择一人参加比赛,
∵=<<,
∴选择甲参赛,
故选A.
【点睛】
此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.
9、B
【解析】
首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
【详解】
解:如图,连接OC,AO,
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的长= =4π,
故选B.
【点睛】
本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.
10、A
【解析】
∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,
∴从四张卡片中任取一张,恰好是中心对称图形的概率=.
故选A.
11、B
【解析】
直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.
【详解】
解:
∵a∥b,∠1=50°,
∴∠4=50°,
∵∠3=120°,
∴∠2+∠4=120°,
∴∠2=120°-50°=70°.
故选B.
【点睛】
此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.
12、B
【解析】
首先解出各个不等式的解集,然后求出这些解集的公共部分即可.
【详解】
解:由x﹣2≥0,得x≥2,
由x+1<0,得x<﹣1,
所以不等式组无解,
故选B.
【点睛】
解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2.5×1
【解析】
先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
【详解】
1 300 000 000÷52÷1 000(千克)=25 000(千克)=2.5×1(千克).
故答案为2.5×1.
【点睛】
本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
14、丙
【解析】
先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
【详解】
因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,
所以丙组的成绩比较稳定,
所以丙组的成绩较好且状态稳定,应选的组是丙组.
故答案为丙.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
15、6.
【解析】
分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
详解: 设扇形的半径为r,
根据题意得:,
解得 :r=6
故答案为6.
点睛: 此题考查弧长公式,关键是根据弧长公式解答.
16、3,1
【解析】
直接得出2<<3,1<<5,进而得出答案.
【详解】
解:∵2<<3,1<<5,
∴的整数x的值是:3,1.
故答案为:3,1.
【点睛】
此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
17、
【解析】
已知BC=8, AD是中线,可得CD=4, 在△CBA和△CAD中, 由∠B=∠DAC,∠C=∠C, 可判定△CBA∽△CAD,根据相似三角形的性质可得 , 即可得AC2=CD•BC=4×8=32,解得AC=4.
18、
【解析】
设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.
【详解】
如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,
由折叠可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的长等于AB=.
故答案为.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
【解析】
试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.
(3)列出y与x的关系式,求y的最大值时,x的值.
试题解析:
(1)y=20x+15(600-x) =5x+9000,
∴y关于x的函数关系式为y=5x+9000;
(2)根据题意,得50 x+35(600-x)≥26400,
解得x≥360,
∵y=5x+9000,5>0,
∴y随x的增大而增大,
∴当x=360时,y有最小值为10800,
∴每天至少获利10800元;
(3) ,
∵,∴当x=250时,y有最大值9625,
∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
20、(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元.
【解析】
(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;
(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.
【详解】
(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,
根据题意得:
解得:x=5,
经检验,x=5是所列分式方程的解且符合题意.
∴3x=15,2x=1.
答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天.
(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,
∴甲、乙两队每日完成的工作量之比是2:3,
∴甲队应得的报酬为(元),
乙队应得的报酬为4000﹣1600=2400(元).
答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.
【点睛】
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
21、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
【解析】
【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
根据题意得,,
解得,
经检验,是原方程的解,
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
甲乙两种商品的销售量为,
设甲种商品按原销售单价销售a件,则
,
解得,
答:甲种商品按原销售单价至少销售20件.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
22、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
【解析】
(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
【详解】
(1)①∵△ABC是等边三角形,BC=1,
∴AB=AC=1,∠BAC=60,
∴AB′=AC′=1,∠B′AC′=120°.
∵AD为等腰△AB′C′的中线,
∴AD⊥B′C′,∠C′=30°,
∴∠ADC′=90°.
在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
∴AD=AC′=2.
②∵∠BAC=90°,
∴∠B′AC′=90°.
在△ABC和△AB′C′中,,
∴△ABC≌△AB′C′(SAS),
∴B′C′=BC=6,
∴AD=B′C′=3.
故答案为:①2;②3.
(2)AD=BC.
证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
∴∠BAC=∠AB′E.
在△BAC和△AB′E中,,
∴△BAC≌△AB′E(SAS),
∴BC=AE.
∵AD=AE,
∴AD=BC.
(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
∵PB=PC,PF⊥BC,
∴PF为△PBC的中位线,
∴PF=AD=3.
在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
∴BF==1,
∴BC=2BF=4.
【点睛】
本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
23、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.
【解析】
试题分析:(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解;
(2)根据相似三角形的判定与性质,由三角形的周长比可求解;
(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解.
试题解析:(1)∵AD=CD.
∴∠DAC=∠ACD=45°,
∵∠CEB=45°,
∴∠DAC=∠CEB,
∵∠ECA=∠ECA,
∴△CEF∽△CAE,
∴,
在Rt△CDE中,根据勾股定理得,CE= ,
∵CA=,
∴,
∴CF=;
(2)∵∠CFE=∠BFA,∠CEB=∠CAB,
∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,
∵∠ABF=180°﹣∠CAB﹣∠AFB,
∴∠ECA=∠ABF,
∵∠CAE=∠ABF=45°,
∴△CEA∽△BFA,
∴(0<x<2),
(3)由(2)知,△CEA∽△BFA,
∴,
∴,
∴AB=x+2,
∵∠ABE的正切值是,
∴tan∠ABE=,
∴x=,
∴AB=x+2=.
24、官有200人,兵有800人
【解析】
设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设官有x人,兵有y人,
依题意,得:
,
解得: .
答:官有200人,兵有800人.
【点睛】
本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
25、(1)见解析;(2)菱形
【解析】
试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;
(2)由对角线互相垂直平分的四边形是菱形证明即可.
试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;
(2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.
在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.
26、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
【解析】
(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
【详解】
(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
令y=0,得到:x2﹣4x﹣5=0,
解得x=﹣1或5,
∴A(﹣1,0),B(5,0).
(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
把点Q′坐标代入y=﹣x2+4x+5,
得到:m2﹣4m﹣5=﹣m2﹣4m+5,
∴m=或(舍弃),
∴Q(,).
(Ⅲ)如图,作MK⊥对称轴x=2于K.
①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
∵此时点M的横坐标为1,
∴y=8,
∴M(1,8),N(2,13),
②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
此时M′的横坐标为3,可得M′(3,8),N′(2,3).
【点睛】
本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
27、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
【解析】
(1)依题意代入x的值可得抛物线的表达式.
(2)令y=0可求出x的两个值,再按实际情况筛选.
(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
【详解】
解:(1)如图,设第一次落地时,
抛物线的表达式为
由已知:当时
即
表达式为(或)
(2)令
(舍去).
足球第一次落地距守门员约13米.
(3)解法一:如图,第二次足球弹出后的距离为
根据题意:(即相当于将抛物线向下平移了2个单位)
解得
(米).
答:他应再向前跑17米.
浙江地区重点达标名校2021-2022学年中考数学最后一模试卷含解析: 这是一份浙江地区重点达标名校2021-2022学年中考数学最后一模试卷含解析,共25页。试卷主要包含了下列命题是真命题的是,若一个正比例函数的图象经过A,正比例函数y=等内容,欢迎下载使用。
湖北省黄冈麻城市重点达标名校2021-2022学年中考数学最后一模试卷含解析: 这是一份湖北省黄冈麻城市重点达标名校2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。
2022届金平区重点达标名校中考数学最后一模试卷含解析: 这是一份2022届金平区重点达标名校中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,五名女生的体重等内容,欢迎下载使用。