搜索
    上传资料 赚现金
    英语朗读宝

    小升初数学真题试卷含答案

    小升初数学真题试卷含答案第1页
    小升初数学真题试卷含答案第2页
    小升初数学真题试卷含答案第3页
    还剩58页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    小升初数学真题试卷含答案

    展开

    这是一份小升初数学真题试卷含答案,共61页。
    


    小升初数学真题试卷通用版
    10套含答案











    二〇二二 年

    目 录
    第一套真题试卷 3
    第二套真题试卷 8
    第三套真题试卷 12
    第四套真题试卷 17
    第五套真题试卷 22
    第六套真题试卷 27
    第七套真题试卷 33
    第八套真题试卷 38
    第九套真题试卷 43
    第十套真题试卷 47


    第一套真题试卷
    一、填空题:
    1. =( )
    2. 在下列的数字上加上循环点,使不等式能够变正确: 0.9195<0.9195<0.9195<0.9195<0.9195
    3. 如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有( )个三角形.

    4. 今年小宇15岁,小亮12岁,( )年前,小宇和小亮的年龄和是15.
    5. 在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得( )分.
    6. 有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是( ).
    7. 如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是( )cm2.(圆周率的值取3.14)

    8. 直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形BFEG的边长是( ).
      
    9. 有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水( )升.
    10. 100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是( )(上、下 车所用的时间不计).
    二、解答题:
    11. 一个四边形的广场,它的四边长分别是60米,72米,96米,84米.在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?



    12. 一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?



    13. 能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.



    14. 两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?
     


    15. 在一个奇怪的动物村庄里住着猫、狗和其他一些动物.有20%的狗认为它们是猫;有20%的猫认为它们是狗.其余动物都是正常的.一天,动物村的村长小猴子发现:所有的猫和狗中,有32%认为自己是猫.如果这个奇怪的动物村庄里有狗比猫多180只.那么狗的数目是多少只?
    答案部分
    一、填空题:
    1. 答案:
    解析:注意到,,…
    ,所以,
    原式

    2. 答案:
    解析:略
    3. 答案:(37)
     解析:将△A1A6A12分解成以OA6为公共边的两个三角形.
    △OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,
    所以图中共有(15+21+1=)37个三角形.
    4. 答案:(6年)
      解析:今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,
    故12÷2=6年.
    5. 答案:(154)
      解析:145×4-(139+143+144)=154.
    6. 答案:(421)
    解析:这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.
    7. 答案:(5)
    解析:由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径之差。由 得,即,,,,即,,面积为.
    8. 答案:
    解析:

    连结AE、CE、BE,然后应用三角形面积公式求解。,
    ,△ABE和△CBE面积之和是,设正方形边长为,
    由图示可见是两个三角形的高,则,得。
    9. 答案:(16升)
     解析:由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量
    为4份,则因2容器中的水量为2份,按题意画图如下:
      
    故较少容器原有水量8×2=16(升).
    10. 答案:
    解析:把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,
    们才能同时到达目的地,用的时间才最少.

    如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,
    又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶5=11:1),
    于是AE=6千米,9=33,从而千 米。所用全部时间为(小时).
    二、解答题:
    11. 答案:(26棵)
      解析:要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=26
    12. 答案:(28米/秒,260米)
      解析:(1980-1140)÷(80-50)=28(米/秒)
       28×50-1140=260(米)
    13. 答案:不可能.
    解析:反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.
    14. 答案:(106元)
    解析:第一辆车每包货交包货加上元税金;第二辆车每包货交包货减去 元税金。第一辆车每包货比第二辆车每包货少交包货,但多交2+2=4元钱。可见包货收税处作价4元,所以每包货收税处作价元.但96元不是销售价,因为交给税收处的货也已扣除了税金.每包货的税金是,所以,每包销售价96+10=106(元).
    15. 答案:240只
    解析:仔细分析题目,发现本题其实是一个简单的浓度问题:有20%的狗认为自己是猫,有80%的猫认为自己是猫;而将猫和狗混合在一起,所有的猫和狗中,有32%的认为自己是猫.那么根据浓度三角,狗和猫的数量之比为:.而狗比猫多180只,所以狗的数目为只.

    第二套真题试卷

    一、填空题
    1. 计算:211×555+445×789+555×789+211×445=______.


    2. 纽约时间是香港时间减13小时,你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通话,那么在香港你应____月____日____时给他打电话.


    3. 3名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人____人.


    4. 大于100的整数中,被13除后商与余数相同的数有____个.


    5. 移动循环小数5.0858的前一个循环点后,使新的循环小数尽可能大.这个新的循环小数是______.


    6. 在1998的约数(或因数)中有两位数,其中最大的数是______.


    7. 狗追狐狸,狗跳一次前进1.8米,狐狸跳一次前进1.1米.狗每跳两次时狐狸恰好跳3次,如果开始时狗离狐狸有30米,那么狗跑_____米才能追上狐狸.


    8. 在下面(1)、(2)两排数字之间的“□”内,选择四则运算中的符号填入,使(1)、(2)两式的运算结果之差尽可能大.那么差最大是_____.
    (1)1□2□3□4□5□6□7=

    (2)7□6□5□4□3□2□1=

    9. 下图中共有____个长方形(包括正方形).






    10. 有一个号码是六位数,前四位是2857,后两位记不清,即2857□□.但是我记得,它能被11和13整除,那么这个号码是_____.


    二、解答题
    11. 有一池泉水,泉底不断涌出泉水,而且每分钟涌出的泉水一样多.如果用8部抽水机10小时能把全池泉水抽干,如果用12部抽水机6小时能把全池泉水抽干,那么用14部抽水机多少小时能把全池泉水抽干?
    12. 如图,是长方形,其中=8,=6,=3.并且是线段的中点,是线段的中点.求三角形(阴影部分)的面积.










    13. 从7开始,把7的倍数依次写下去,一直994,成为一个很大的数:
    71421……987994.这个数是几位数?如果从这个数的末位数字开始,往前截去160个数字,剩下部分的最末一位数字是多少?








    14. 两人做一种游戏:轮流报数,报出的数只能是1,2,3,4,5,6,7,8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你就第一个数报几?











    部分答案
    1. 1000000.
    211×555+445×789+555×789+211×445
    =211×(555+445)+789×(445+555)
    =211×1000+789×1000
    =(211+789)×1000
    =1000×1000
    =1000000
    2. 4月2日上午9时.
    3. 9.
    (人).
    4. 5.
    13×7+7=98160,所以截去的160个数字全是三位数中能被7整除的数,160÷3=53……1,又知三位数中能被7整除的数为142个,那么142-53=89,89×7=623,因为被截去的160个数字是53个能被7整除的三位数多一个数字,而多的这个数字就是3,那么剩下的最末一位数字就是2,2即为所求.
    14. 对方至少要报数1,至多报数8,不论对方报什么数,你总是可以做到两人所报数之和为9.
    123÷9=13……6.
    你第一次报数6.以后,对方报数后,你再报数,使一轮中两人报的数和为9,你就能在13轮后达到123.




    第三套真题试卷
    一、填空题:
    1. 在下面的四个算式中,最大的得数是( ):
    (1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.
    2. 今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了( ).
    3. 填写下面的等式:(1)(2)
    4. 任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有( ).
    5. 下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:

    则被乘数为( ).
    6. 如图,每个小方格的面积是1cm2,那么△ABC的面积是( )cm2.

    7. 如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有( )条.

    8. 10点15分时,时针和分针的夹角是( ).
    9. 一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为( ).
    10. 老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为( )名.
    二、解答题:
    11. 如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是多少平方千米?

    12. 汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度是多少千米?



    13. 已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数是多少?



    14. 某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?



    15. 甲、乙、丙三人承包一项工程,发给他们工资共1800元,三人完成这项工程的具体情况是:甲、乙两人合作6天完成了工程的,因为甲有事,由乙、丙合作2天完成余下工程的,以后三人合作5天完成了这项工程,按完成量的多少来付劳动报酬,甲、乙、丙各得多少元?





    答案部分
    一、填空题:
    1. 答案:3988009
    解析:由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.
    2. 答案:200千克
    解析:苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)(千克),因此这批苹果总重损失了200千克。
    3. 答案:(1)26,26或14,182.(2)46、46.答案不唯一
    4. 答案:0个
    解析:因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.
    5. 答案:142857或285714
    解析:易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.
    6. 答案:8.5
    解析:
    7. 答案:15条
    解析:以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).
    8. 答案:142°30′
    解析:10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在位置之间的夹角为360°-307.5°=52°30′,时针与分针之间的夹角90°+52°30′=142°30′.
    9. 答案:都不亮
    解析:奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.
    10. 答案:33
    解析:把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).
    二、解答题:
    11. 答案:0.58
    解析:由△BOC与△DOC等高h1,△BOA与△DOA等高h2,利用面积公式:,,得BO:DO=2:3,即,又得.则湖的面积为(平方千米)
    12. 答案:40千米/小时
    解析:设两地距离为a,则总距离为2a.(千米/小时)
    13. 答案:98
    解析:由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.
    14. 答案:15只
    解析:利用柳卡图解题,画图如下:

    粗线代表今天中午从哈佛开往纽约的轮船的路线图,细线代表从纽约开往哈佛的轮船行驶路线,与其中的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.
    15. 答案:甲应得元,乙应得元,丙应得元.
    解析:根据题意可知,甲、乙两人的工作效率之和为;乙、丙两人的工作效率之和为;甲、乙、丙三人的工作效率之和为.分别可求得甲的工作效率为,乙的工作效率为,丙的工作效率为,则甲完成的工程量为:,乙完成的工程量为:,丙完成的工程量为:,三人所完成的工作量之比为.所以,甲应得元,乙应得元,丙应得元.
    第四套真题试卷
    一、填空题:
    1. 29×12+29×13+29×25+29×10=( ).
    2. 2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.算式为:( ).
    3. 小华看一本书,每天看16页,5天后还剩全书的没看,这本书是( )页.
    4. 如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之( )(保留一位小数).

    5. 某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有( )名学生.
    6. 掷两粒骰子,出现点数和为7、为8的可能性大的是( ).
    7. 老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋( )个.
    8. 一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是( ).
    9. 一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成( )对兔子.
    10. 有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有( )种不同的方式.
    二、解答题:
    11. 甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?

    12. 第一口木箱里有303只螺帽,第二口木箱里的螺帽是全部螺帽的,第三口木箱里的螺帽占全部螺帽的(n是整数).问:三口木箱中的螺帽共有多少个?



    13. 某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?



    14. 有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?



    15. 一个自然数在和之间,且被除余,被除余,被除余,求符合条件的数.











    答案部分
    一、填空题:
    1. 答案:1740
    解析:29×(12+13+25+10)=29×60=1740
    2. 答案:(2+4÷10)×10
    3. 答案:200页
    解析:(页)
    4. 答案:73.8%
    解析:正方体的体积:,圆锥体积:,剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.8%
    5. 答案:107
    解析:3×5×7+2=105+2=107
    6. 答案:7的可能性大
    解析:出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.所以出现7的可能性大。
    7. 答案:15
    解析:最后篮内鸡蛋个数0,第三次卖蛋后余下的鸡蛋的个数,
    第二次卖蛋后余下的鸡蛋个数;第一次卖蛋后余下的鸡蛋的个数,
    原有鸡蛋的个数.
    8. 答案:小时
    解析:由图知道,
    甲和自行车队分别以45千米/小时和35千米/小时的速度共同走完了着段路程的2倍,所以所花时间为(小时)
    9. 答案:233
    解析:从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.
    10. 答案:89种
    解析:用递推法.他要到第10级只能从第9级或第8级直接登上。于是先求出登到第9级或第8级各有多少种方式,再把这两个数相加就行.以下,依次类推,故有34+55=89(种).
    二、解答题:
    11. 答案:乙先到
    解析:甲乙行走路程画图如下:
    对于甲:一半路程骑车一半路程步行,
    对于乙:骑车的时间和走路的时间相同,因为骑自行车的速度比步行的速度快,
    因此,骑自行车用一半的时间所走的路程超过全程的一半.经过对比分析得到乙先到
    12. 答案:3535个
    解析:n的值只能在0,1,2,3,4,5这六个数中选取(n不能等于6,因这),所以最多尝试六次可得答案;即n=5时.全部螺帽(个).
    13. 答案:赔了
    解析:正品赚了600÷(1+20%)×20%=100(元),处理品赔了600÷(1-20%)×20%=150(元)
    总计:150-100=50(元),即赔了.
    14. 答案:40分
    解析:骑车人一共看见12辆电车.因每隔5分钟有一辆电车开出,而全程需15分,所以骑车人从乙站出发时,他将要看到的第4辆车正从甲站开出.到达甲站时,第12辆车正从甲站开出.所以,骑车人从乙站到甲站所用时间就是从第4辆电车从甲开出到第12辆电车由甲开出之间的时间.即(12-4)×5=40(分).
    15. 答案:1102
    解析:方法一:我们先找出被除余的数:
    ,,,,,,,,,,,,,,,,,,…;
    被除余的数:,,,,,,,,,,,,…;
    被除余的数:,,,,,,,,…;
    三个条件都符合的最小的数是,其后的是依次加上、、的最小公倍数,
    直到加到 和之间.结果是.
    方法二:设这个自然数为,被除余,被除余,可以理解为被除余,被除与,所以满足前面两个条件的(为自然数),只需除以余,即除以余,而,只需除以余,最小为,所以满足三个条件的最小自然数为,那么这个数在和之间,应该是.

    第五套真题试卷
    一、填空题
    1. 计算:(2.5×)÷(×0.8)-0.75÷=_____.
    2. 将一个不能被3整除的自然数,拆分成若干个自然数的和.那么,在这若干个自然数中不能被3整除的数至少有_____个.

    3. 甲、乙两辆汽车,甲在西地,乙在东地,同时向东开行.甲每小时行60千米,乙每小时行48千米,行了5小时后,甲在乙后面24千米处.那么东西两地相隔_____千米.

    4. 将0,1,2,3,4,5,6,7,8,9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.
    □+□□=□□□ 则算式中的三位数最大是_____.
    5. 将循环小数与相乘,取近似值,要求保留一百位小数.那么,该近似值的最后一位小数是_____.

    6. 一个两位数减去它的倒序数(如92的倒序数是29,30的倒序数是3),其差大于0且能被9整除.那么,这样的两位数共有_____个.

    7. 用8个不同数字写成的8位数中,能被36整除的最大数是_____.

    8. 甲有216个玻璃球,乙有54个同样的玻璃球.两人相互给球,8次后,甲有的个数是乙的8倍,平均每次甲要少给乙_____个球.

    9. 在1,2两数之间,第一次写上3;第二次在1,3; 3,2之间分别写上4,5(如下图),每一次都在已写上的两个相邻数之间,写上这两个相邻数之和.这样的过程共重复了八次.那么,所有数之和是_____.
    1……4……3……5……2

    10. 直角三角形的两直角边的长都是整厘米数,面积为59.5平方厘米.每次取四个同样的三角形围成(不重叠,不剪裁)含有两个正方形图案的图形(如图),在围成的所有正方形图案中,最小的正方形的面积是_____平方厘米,最大的正方形的面积是_____平方厘米.




    二、解答题
    11. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米.甲、乙两人从地,丙一人从地同时相向出发,丙遇到乙后2分钟又遇到甲,求、两地的距离.






    12. 如图所示,在正方形中,红色、绿色正方形的面积分别是27和12,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点.求黄色正方形的面积.








    13. 是一个三位数,由三个数码组成的另外五个三位数之和等于2743.求三位数.






    14. 某小学有六名乒乓球选手进行单打循环赛.比赛在三个台上同时进行,比赛时间是每星期六的下午,每人每周只能而且必须参加一场比赛,因而比赛需要进行五周.
    已知在第一周的星期六和对垒;第二周与对垒;第三周和对垒;第四周和对垒.当然,在上述这些对垒的同时,另外还有两台比赛,但这两台比赛是谁和谁对垒,我们不清楚.
    问:上面未提到过名字的在第五周同谁进行了比赛?请说明理由.




    部分答案
    1. 0.
    (2.5×)÷(×0.8)-0.75÷
    =()÷(×)-÷
    =2÷-×
    =2×5-10
    =0.
    2. 1.
    不能被3整除的数至少有1个,否则每个数都能被3整除,其和必为3的倍数,与已知产生矛盾.
    3. 84.
    行了5小时,追了5×(60-48)=60(千米),还相隔24千米,因此,原来两人相距60+24=84(千米),即两地相隔84千米.
    4. 105.
    和的前两位是1和0,两位数的十位是9,因此加数的个位最大是7和8.
    5. 9.
    ×
    =
    =
    =
    =
    这个小数小数点后第100位是8,第101位是5,所以保留小数点后100位的近似值的最后一位是9.
    6. 45.
    设两位数为,则其倒序数为.
    -=(10)-(10)=9().
    依题意,,所以十位数是1,2,3,…,9的符合题意的两位数依次有1,2,3,…,9个,共有1+2+3+…+9=45(个).
    7. 98763120.
    八位数能被36整除,又36=4×9,因此八位数能被9整除,其8个数字之和也能被9整除.又0+1+2+…+9=45是9的倍数,故十个数字中去掉的两个数字之和为9,要使八位数尽可能大,则去掉的两个数字为5和4,所求八位数的前4位为9876,又八位数能被4整除,未两位应是4的倍数,因此八位数最大为98763120.
    8. 3.
    8次后,乙有球(216+54)÷9=30(个),所以平均每次甲少给乙(54-30)÷8=3(个).
    9. 9843.
    第次写上去的所有数之和是,所以写过八次之后,所有数之和是3+31+32+33+…+38=9843.
    10. 100,14162.
    直角三角形的两条直角边相乘等于59.5×2=119,因为119=1×119=7×17,所以,满足题意的直角三角形只有下图所示的两种.

    7 1
    17 119
    用上图所示的相同的四个三角形围成的含有两个正方形图案的图形,有下图所示的两种,其中左图阴影正方形面积最小,为(17-7)=100(),右图大正方形面积最大,为119+1=14162().






    11. 当丙和乙相遇时,乙和甲相距:(70+50)×2=240(米).那么乙从出发到和丙相遇的时间为:240÷(50-40)=24(分).
    所以全程为:60×24+70×24=3120(米).
    12. 设红色正方形的边长为,绿色正方形边长为,正方形分成四块后,除红色和绿色正方形外,另外两个长方形的边长分别为.依题意,=27,
    =12.长方形的面积.则,
    ==27×12=××3=×=,=18.
    所以,正方形面积为27+12+2×18=75.
    易知黄色正方形分别占红色正方形,绿色正方形和两个长方形的,即黄色正方形的面积为正方形面积的,为75×=18.75.
    13. 由三个数码组成的所有六个三位数之和等于()×222,由题意可知,这六个三位数之和应大于2743,小于3743.因为2743÷222>12,3743÷22236),当时,有;当时,;当时,不存在;当时,.

    10. 25.
    因1+2+…+62=;又1+2+…+63=2016. 1953

    相关试卷

    小升初数学真题试卷含答案:

    这是一份小升初数学真题试卷含答案,共68页。

    小升初数学真题试卷含答案:

    这是一份小升初数学真题试卷含答案,共97页。

    小升初数学真题试卷,通用版Q卷含答案:

    这是一份小升初数学真题试卷,通用版Q卷含答案,共6页。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map