所属成套资源:2022河南顶级名校高三考前真题重组导向卷(三)
2022届河南省顶级名校高三考前真题重组导向卷(三)理科数学试题及答案
展开
这是一份2022届河南省顶级名校高三考前真题重组导向卷(三)理科数学试题及答案,共10页。试卷主要包含了已知,是虚数单位,若,,则,设集合则=,下列命题为真命题的是,若过点可以作曲线的两条切线,则等内容,欢迎下载使用。
2022届高三考前真题重组导向卷(三)理科数学一.选择题1.已知,是虚数单位,若,,则( )A.1或 B.或 C. D.2.设集合则=( )A. B. C. D.3.下列命题为真命题的是( )A.且 B.或C., D.,4.已知函数的定义域为,为偶函数,为奇函数,则( )A. B. C. D.5.两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A.10种 B.15种 C.20种 D.30种6.在平面直角坐标系中,已知向量点满足.曲线,区域.若为两段分离的曲线,则( )A. B. C. D.7.设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )A. B.C. D.8.已知函数,.若在区间内没有零点,则的取值范围是( )A. B. C. D.9.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为( )A. B. C. D.10.若过点可以作曲线的两条切线,则( )A. B. C. D.11.已知的内角,面积满足所对的边,则下列不等式一定成立的是A. B. C. D.12.设函数满足则时,A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值又有极小值 D.既无极大值也无极小值二.填空题13.已知 的展开式中含有 项的系数是54,则n=_____________.14.设函数则满足的x的取值范围是____________15.设双曲线x2–=1的左、右焦点分别为F1,F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是_______.16.已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为____.三.解答题17.已知首项都是1的两个数列(),满足.(1)令,求数列的通项公式;(2)若,求数列的前n项和18.已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点. (1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小? 19. 在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的分布列与数学期望E(X).(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)20.已知抛物线:的焦点为,过且斜率为的直线与抛物线交于,两点,在轴的上方,且点的横坐标为4.(1)求抛物线的标准方程;(2)设点为抛物线上异于,的点,直线与分别交抛物线的准线于,两点,轴与准线的交点为,求证:为定值,并求出定值. 21.已知函数有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是的两个零点,证明:. 22.已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围. 理科数学答案1-4.ACDB5【答案】C【解析】【详解】试题分析:第一类:三局为止,共有种情形;第二类:四局为止,共有种情形;第三类:五局为止,共有种情形;故所有可能出现的情形共有种情形故选C.6.【答案】A试题分析:设,则 ,,区域 表示的是平面上的点到点的距离从到之间,如下图中的阴影部分圆环,要使 为两段分离的曲线,则,故选A. 7.B【详解】方法1:如图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,,即,综上所述,答案为B. 方法2:由最小角定理,记的平面角为(显然)由最大角定理,故选B.方法3:(特殊位置)取为正四面体,为中点,易得,故选B.8.【答案】D试题分析:,,所以,因此,选D.9.【答案】D详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.10【答案】D在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,,此时函数单调递增,当时,,此时函数单调递减,所以,,由题意可知,直线与曲线的图象有两个交点,则,当时,,当时,,作出函数的图象如下图所示: 由图可知,当时,直线与曲线的图象有两个交点.11.【答案】A试题分析:由题设得: (1)由三角形面积公式及正弦定理得:所以又因为,所以所以恒成立,所以故选A.12.【答案】D函数满足,,令,则,由,得,令,则在上单调递减,在上单调递增,的最小值为.又在单调递增,既无极大值也无极小值,故选D. 13.【答案】14.【答案】 由题意得: 当时,恒成立,即;当时, 恒成立,即;当时,,即.综上,x的取值范围是. 15.【答案】.试题分析:由已知得,则,设是双曲线上任一点,由对称性不妨设在双曲线的右支上,则,,,为锐角,则,即,解得,所以,则.16.【答案】不妨设球的半径为4,球的表面积为,因为圆锥底面面积是这个球面面积的,所以圆锥的底面积为,圆锥的底面半径为;由几何体的特征知球心到圆锥底面的距离,球的半径以及圆锥底面的半径三者可以构成一个直角三角形,由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为,同理可得圆锥体积较大者的高为;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为.故答案为:17(1)因为,所以所以数列是以首项,公差的等差数列,故(2)由知于是数列前n项和相减得所以18.(1)[方法一]:几何法因为,所以.又因为,,所以平面.又因为,构造正方体,如图所示,过E作的平行线分别与交于其中点,连接,因为E,F分别为和的中点,所以是BC的中点,易证,则.又因为,所以.又因为,所以平面.又因为平面,所以. [方法二] 【最优解】:向量法因为三棱柱是直三棱柱,底面,,,,又,平面.所以两两垂直.以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.,.由题设().因为,所以,所以.(2)[方法一]【最优解】:向量法设平面的法向量为,因为,所以,即.令,则因为平面的法向量为,设平面与平面的二面角的平面角为,则.当时,取最小值为,此时取最大值为.所以,此时. [方法二] :几何法如图所示,延长交的延长线于点S,联结交于点T,则平面平面.作,垂足为H,因为平面,联结,则为平面与平面所成二面角的平面角.设,过作交于点G.由得.又,即,所以.又,即,所以.所以.则,所以,当时,.19.(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,可以取20,30,,,则的分布列: 所以;(2)由题意,可以取25,30,两名感染者在同一组的概率为,不在同一组的概率为,则.20(1)由题意得:,因为点的横坐标为4,且在轴的上方,所以,因为的斜率为,所以,整理得:,即,得,抛物线的方程为:.(2)由(1)得:,,淮线方程,直线的方程:,由解得或,于是得.设点,又题意且,所以直线:,令,得,即,同理可得:,. 21.试题解析:(Ⅰ).(Ⅰ)设,则,只有一个零点.(Ⅱ)设,则当时,;当时,.所以在单调递减,在单调递增.又,,取满足且,则,故存在两个零点.(Ⅲ)设,由得或.若,则,故当时,,因此在单调递增.又当时,所以不存在两个零点.若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,,在单调递减,所以等价于,即.由于,而,所以.设,则.所以当时,,而,故当时,.从而,故. 22.(1)[方法一]:消元法由得的普通方程为.由参数方程可得,两式相乘得普通方程为.[方法二]【最优解】:代入消元法由得的普通方程为,由参数方程可得,代入中并化简得普通方程为.(2)[方法一]:几何意义+极坐标将代入中解得,故P点的直角坐标为.设P点的极坐标为,由得,,.故所求圆的直径为,所求圆的极坐标方程为,即.[方法二]:由得所以P点的直角坐标为.因为.设圆C的极坐标方程为,所以,从而,解得.故所求圆的极坐标方程为.[方法三]:利用几何意义由得所以P点的直角坐标为,化为极坐标为,其中.如图,设所求圆与极轴交于E点,则,所以,所以所求圆的极坐标方程为.[方法四]【最优解】:由题意设所求圆的圆心直角坐标为,则圆的极坐标方程为.联立得解得.设Q为圆与x轴的交点,其直角坐标为,O为坐标原点.又因为点都在所求圆上且为圆的直径,所以,解得.所以所求圆的极坐标方程为.[方法五]利用几何意义求圆心由题意设所求圆的圆心直角坐标为,则圆的极坐标方程为.联立得,即P点的直角坐标为.所以弦的中垂线所在的直线方程为,将圆心坐标代入得,解得.所以所求圆的极坐标方程为. 23.详解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.
相关试卷
这是一份河南省顶级名校2022届高三5月全真模拟考试理科数学试题-,共21页。
这是一份河南省顶级名校2022届高三5月全真模拟考试理科数学试题-,共21页。试卷主要包含了请将答案正确填写在答题卡上,的展开式中的常数项为,函数在下列区间单调递减的是,设,为两个平面,则的充要条件是,记为等差数列的前项和,且,则等内容,欢迎下载使用。
这是一份2022年河南省顶级名校高三考前真题重组导向卷(三)理科数学试题含答案,共9页。