辽宁省东北育才学校高中部2021-2022学年高三第六次模拟考试数学试题
展开2021-2022学年度东北育才学校高中部高三第六次模拟考试数学科试卷
答题时间:120分钟 满分:150分 命题人:高三数学组 校对人:高三数学组
I客观卷
一、单选题(共8小题,每题5分,共40分。每个题目四个选项中有且只有一个是正确答案。)
1.已知全集,,,则( )
A. B. C. D.
2.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义.例如,,即复数的模的几何意义为在复平面内对应的点到原点的距离.在复平面内,若复数对应的点为,为曲线上的动点,则与之间的最小距离为( )
A.3 B.4 C.5 D.6
3.某大学有两家餐厅,某同学第1天午餐时随机地选择一家餐厅用餐,如果第一天去餐厅,那么第2天去餐厅的概率是;如果第一天去餐厅,那么第二天去餐厅的概率是;则该同学第2天去餐厅用餐的概率是( )
A. B. C. D.
4.如图,已知两个单位向量,,且它们的夹角为,点C在以O为圆心,1为半径的上运动,则·的最小值为( )
A. B.0 C. D.-
5. 设函数,则下列函数中为奇函数的是( )
A. B. C. D.
6.已知圆C的半径为,其圆心C在直线上,圆C上的动点P到直线的距离的最大值为,则圆C的标准方程为( )
A. B.
C. D.
7.已知实数、满足,有结论:①存在,,使得取到最大值;②存在,,使得取到最小值;正确的判断是( )
A.①成立,②成立 B.①不成立,②不成立
C.①成立,②不成立 D.①不成立,②成立
8.已知,,,则,,的大小关系是( )
A. B. C. D.
二、多选题(共4小题,每题5分,共20分。多选不得分,漏选得2分。)
9.已知函数,设,则成立的一个充分条件是( )
A. B. C. D.
10.已知双曲线的左、右焦点分别为,,左、右顶点分别为,,P为双曲线的左支上一点,且直线与的斜率之积等于3,则下列说法正确的是( )
A.双曲线的离心率为2 B.若,且,则
C.以线段,为直径的两个圆外切 D.若点P在第二象限,则
11.若存在实常数和,使得函数和对其定义域上的任意实数都满足和恒成立,则称直线为和的“隔离直线”,已知函数,,,下列命题正确的是( )
A.与有“隔离直线”
B.和之间存在“隔离直线”,且的取值范围为
C.和之间存在“隔离直线”,且的取值范围是
D.和之间存在唯一的“隔离直线”
12.在圆锥中,是母线上靠近点的三等分点,,底面圆的半径为,圆锥的侧面积为,则( )
A.当时,从点到点绕圆锥侧面一周的最小长度为
B.当时,过顶点和两母线的截面三角形的最大面积为
C.当时,圆锥的外接球表面积为
D.当时,棱长为的正四面体在圆锥内可以任意转动
II主观卷
三、填空题(共4小题,每题5分,共20分。)
13.若的展开式的各项系数和为32,则该展开式中的系数是______.
14.对一个物理量做次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差,为使误差在的概率不小于0.9545,至少要测量_____次(若,则).
15.设抛物线的焦点为F,过点F的直线与抛物线交于A,B两点,过弦AB的中点M作E的准线的垂线,与抛物线E交于点P,若,则______.
16.1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知中,其中,,P为费马点,则的取值范围是__________.
四、解答题(共6小题,共70分。其中第17题10分,第18题至第22题每题12分。)
17.如图所示,遥感卫星发现海面上有三个小岛,小岛 B位于小岛A 北偏东距离60海里处,小岛B北偏东距离海里处有一个小岛 C.
(1)求小岛A到小岛C的距离;
(2)如果有游客想直接从小岛A出发到小岛 C,求游船航行的方向.
18.如图,直三棱柱中,,、、分别是、、的中点.
(1)求证:;
(2)若,求二面角的余弦值.
19.我国南宋时期的数学家杨辉,在他1261年所著的《详解九章算法》一书中,用如图的三角形解释二项和的乘方规律.此图称为“杨辉三角”,也称为“贾宪三角”.在此图中,从第三行开始,首尾两数为,其他各数均为它肩上两数之和.
(1)把“杨辉三角”中第三斜列各数取出按原来的顺序排列得一数列:,,,,,…,写出与的递推关系,并求出数列的通项公式;
(2)已知数列满足,设数列满足:,数列的前项和为,若恒成立,试求实数的取值范围.
20.2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年.某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:
| A区 | B区 | C区 | D区 |
外来务工人数x/万 | 3 | 4 | 5 | 6 |
就地过年人数y/万 | 2.5 | 3 | 4 | 4.5 |
(1)请用相关系数说明y与x之间的关系可用线性回归模型拟合,并求关于的线性回归方程.
(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴.
(i)若该市E区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E区就地过年的人员发放的补贴总金额;
(ii)若A区的外来务工人员中甲、乙选择就地过年的概率分别为,,该市政府对甲、乙两人的补贴总金额的期望不超过1500元,求的取值范围.
参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为,,.
21.已知函数,.
(Ⅰ)若在内单调递减,求实数的取值范围;
(Ⅱ)若函数有两个极值点分别为,,证明:.
22.已知椭圆的离心率为,椭圆经过点.
(1)求椭圆的标准方程;
(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.
数学-辽宁省东北育才学校2023-2024学年度高中部高三第三次模拟考试试题和答案: 这是一份数学-辽宁省东北育才学校2023-2024学年度高中部高三第三次模拟考试试题和答案,共30页。
【辽宁卷】辽宁省2023-2024学年度东北育才学校高中部高三第三次模拟考试数学: 这是一份【辽宁卷】辽宁省2023-2024学年度东北育才学校高中部高三第三次模拟考试数学,文件包含2023-2024学年度东北育才学校高中部高三第三次模拟考试数学答案docx、2023-2024学年度东北育才学校高中部高三第三次模拟考试数学docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
辽宁省沈阳市东北育才学校高中部2024届高三上学期第三次模拟考试数学试题: 这是一份辽宁省沈阳市东北育才学校高中部2024届高三上学期第三次模拟考试数学试题,文件包含精品解析辽宁省沈阳市东北育才学校2024届高三第三次模拟考试数学试题原卷版docx、精品解析辽宁省沈阳市东北育才学校2024届高三第三次模拟考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。