浙江宁波海曙区2021-2022学年中考数学适应性模拟试题含解析
展开
这是一份浙江宁波海曙区2021-2022学年中考数学适应性模拟试题含解析,共19页。试卷主要包含了下列命题中,真命题是,下列运算正确的是,计算4+等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.函数中,x的取值范围是( )
A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
2.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为
A.4-π B.2-π
C.4-π D.2-π
3.是两个连续整数,若,则分别是( ).
A.2,3 B.3,2 C.3,4 D.6,8
4.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
5.下列命题中,真命题是( )
A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离
B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切
C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切
D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离
6.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
7.下列运算正确的是( )
A.2a2+3a2=5a4 B.(﹣)﹣2=4
C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab
8.计算4+(﹣2)2×5=( )
A.﹣16 B.16 C.20 D.24
9.下列运算正确的是( )
A.a4+a2=a4 B.(x2y)3=x6y3
C.(m﹣n)2=m2﹣n2 D.b6÷b2=b3
10.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4 B.9:16 C.9:1 D.3:1
二、填空题(共7小题,每小题3分,满分21分)
11.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.
12.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.
13.在中,::1:2:3,于点D,若,则______
14.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为 .
15.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.
16.抛物线y=(x﹣2)2﹣3的顶点坐标是____.
17.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.
三、解答题(共7小题,满分69分)
18.(10分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)
19.(5分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(元)
19
20
21
30
(件)
62
60
58
40
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
20.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
21.(10分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
学员
培训时段
培训学时
培训总费用
小明
普通时段
20
6000元
高峰时段
5
节假日时段
15
小华
普通时段
30
5400元
高峰时段
2
节假日时段
8
(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
①求y与x之间的函数关系式,并确定自变量x的取值范围;
②小陈如何选择培训时段,才能使得本次培训的总费用最低?
22.(10分)已知二次函数的图象如图6所示,它与轴的一个交点坐标为,与轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围.
23.(12分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
24.(14分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).
(1)求抛物线的解析式;
(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.
①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;
②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
要使有意义,
所以x+1≥0且x+1≠0,
解得x>-1.
故选B.
2、B
【解析】
由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;
【详解】
连接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
则∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S阴影=S△OAE-S扇形OAF=×2×2-.
故选B.
【点睛】
考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
3、A
【解析】
根据,可得答案.
【详解】
根据题意,可知,可得a=2,b=1.
故选A.
【点睛】
本题考查了估算无理数的大小,明确是解题关键.
4、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
5、D
【解析】
根据两圆的位置关系、直线和圆的位置关系判断即可.
【详解】
A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;
B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;
C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;
D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;
故选:D.
【点睛】
本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.
6、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
7、B
【解析】
根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.
【详解】
A. 2a2+3a2=5a2,故本选项错误;
B. (−)-2=4,正确;
C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;
D. 8ab÷4ab=2,故本选项错误.
故答案选B.
【点睛】
本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.
8、D
【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.
详解:4+(﹣2)2×5
=4+4×5
=4+20
=24,
故选:D.
点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
9、B
【解析】
分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.
详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;
根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;
根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;
根据同底数幂的除法,可知b6÷b2=b4,不正确.
故选B.
点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.
10、B
【解析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:1.
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、7
【解析】
根据多边形内角和公式得:(n-2) .得:
12、
【解析】
【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
【详解】∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
∴AE=CE,∠A=∠ECA=36°,
∴∠CEB=72°,
∴BC=CE=AE=,
故答案为.
【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.
13、2.1
【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
【详解】
解:根据题意,设∠A、∠B、∠C为k、2k、3k,
则k+2k+3k=180°,
解得k=30°,
2k=60°,
3k=90°,
∵AB=10,
∴BC=AB=1,
∵CD⊥AB,
∴∠BCD=∠A=30°,
∴BD=BC=2.1.
故答案为2.1.
【点睛】
本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
14、1.
【解析】
试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
则AD=1,BF=BC+CF=BC+1,DF=AC,
又∵AB+BC+AC=1,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
考点:平移的性质.
15、2
【解析】
由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=即可.
【详解】
由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3
∴圆心角∠AO2O1=60° ∴在Rt△ACO2中,AO2==2.
故答案为2.
【点睛】
本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.
16、(2,﹣3)
【解析】
根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).
【详解】
抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).
故答案为(2,﹣3)
【点睛】
本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.
17、1
【解析】
先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.
【详解】
解:∵∠A+∠C=180°,
∴AB∥CD,
∴∠APM=∠CQM=118°,
∴∠CQN=180°-∠CQM=1°,
故答案为:1.
【点睛】
本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
三、解答题(共7小题,满分69分)
18、37
【解析】
试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
试题解析:如图所示:过点作交于点.
在中,
又∵在中,
答:的长度为
19、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
【解析】
(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;
(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;
(3)根据题意列方程即可得到即可.
【详解】
解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.
则,解得,
∴y=﹣2x+100,
∴y关于x的函数表达式y=﹣2x+100,
∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;
(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.
∴当销售单价为34元时,
∴每日能获得最大利润1元;
(3)当w=350时,350=﹣2x2+136x﹣1800,
解得x=25或43,
由题意可得25≤x≤32,
则当x=32时,18(﹣2x+100)=648,
∴制造这种纪念花灯每日的最低制造成本需要648元.
【点睛】
此题主要考查了二次函数的应用,根据已知得出函数关系式.
20、规定日期是6天.
【解析】
本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.
【详解】
解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得
解方程可得x=6,
经检验x=6是分式方程的解.
答:规定日期是6天.
21、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【解析】
(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;
(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;
②根据一次函数的性质结合自变量的取值范围即可求解.
【详解】
(1)由题意,得,
解得,
故a,b的值分别是120,180;
(2)①由题意,得y=120x+180(40-x),
化简得y=-60x+7200,
∵普通时段的培训学时不会超过其他两个时段总学时的,
∴x≤(40-x),
解得x≤,
又x≥0,
∴0≤x≤;
②∵y=-60x+7200,
k=-60<0,
∴y随x的增大而减小,
∴x取最大值时,y有最小值,
∵0≤x≤;
∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.
22、(1);(2).
【解析】
(1)将(-1,0)和(0,3)两点代入二次函数y=-x2+bx+c,求得b和c;从而得出抛物线的解析式;
(2)令y=0,解得x1,x2,得出此二次函数的图象与x轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x的取值范围.
【详解】
解:(1)由二次函数的图象经过和两点,
得,
解这个方程组,得
,
抛物线的解析式为,
(2)令,得.
解这个方程,得,.
∴此二次函数的图象与轴的另一个交点的坐标为.
当时,.
【点睛】
本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.
23、(1)50;(2)240;(3).
【解析】
用喜爱社会实践的人数除以它所占的百分比得到n的值;
先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;
画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.
【详解】
解:(1);
(2)样本中喜爱看电视的人数为(人,
,
所以估计该校喜爱看电视的学生人数为240人;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,
所以恰好抽到2名男生的概率.
【点睛】
本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.
24、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).
【解析】
(1)应用待定系数法问题可解;
(2)①通过分类讨论研究△APQ和△CDO全等
②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.
【详解】
(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得
,
解得: ,
∴抛物线解析式为:y=-x2-x+3;
(2)①存在点D,使得△APQ和△CDO全等,
当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,
∴tan∠QAP=tan∠DCO,
,
∴,
∴OD=,
∴点D坐标为(-,0).
由对称性,当点D坐标为(,0)时,
由点B坐标为(4,0),
此时点D(,0)在线段OB上满足条件.
②∵OC=3,OB=4,
∴BC=5,
∵∠DCB=∠CDB,
∴BD=BC=5,
∴OD=BD-OB=1,
则点D坐标为(-1,0)且AD=BD=5,
连DN,CM,
则DN=DM,∠NDC=∠MDC,
∴∠NDC=∠DCB,
∴DN∥BC,
∴,
则点N为AC中点.
∴DN时△ABC的中位线,
∵DN=DM=BC=,
∴OM=DM-OD=
∴点M(,0)
【点睛】
本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.
相关试卷
这是一份浙江省宁波市海曙区重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,已知A样本的数据如下等内容,欢迎下载使用。
这是一份浙江省海曙区五校联考2021-2022学年中考数学模拟试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,四根长度分别为3,4,6,,cs30°=等内容,欢迎下载使用。
这是一份2022届浙江宁波海曙区重点名校中考适应性考试数学试题含解析,共24页。试卷主要包含了下列函数中,二次函数是,下列运算正确的是等内容,欢迎下载使用。