邵东县2021-2022学年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
A.a=2,b=3 B.a=-2,b=-3
C.a=-2,b=3 D.a=2,b=-3
2.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )
A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣3
3.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
A.=2 B.=2
C.=2 D.=2
4.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为( )
A. B. C. D.
5.下列图形不是正方体展开图的是( )
A. B.
C. D.
6.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )
A.6 B.5 C.4 D.
7.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )
A.5 B.7 C.8 D.10
8.化简:-,结果正确的是( )
A.1 B. C. D.
9.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
10.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.
12.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.
13.若代数式有意义,则实数x的取值范围是____.
14.如图, AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.
15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
16.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____
17.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.
三、解答题(共7小题,满分69分)
18.(10分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
19.(5分)综合与探究
如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
①当点G与点D重合时,求平移距离m的值;
②用含x的式子表示平移距离m,并求m的最大值;
(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.
20.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.
21.(10分)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
22.(10分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.
23.(12分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.
24.(14分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 m.
(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
2、C
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,
0.00005=,
故选C.
3、A
【解析】
分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.
详解:设原计划每天施工x米,则实际每天施工(x+30)米,
根据题意,可列方程:=2,
故选A.
点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.
4、B
【解析】
本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.
【详解】
①若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.
【点睛】
掌握分类讨论的方法是本题解题的关键.
5、B
【解析】
由平面图形的折叠及正方体的展开图解题.
【详解】
A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
故选B.
【点睛】
此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
6、D
【解析】
根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
【详解】
∵ED是BC的垂直平分线,
∴DB=DC,
∴∠C=∠DBC,
∵BD是△ABC的角平分线,
∴∠ABD=∠DBC,
∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
∴∠C=∠DBC=∠ABD=30°,
∴BD=2AD=6,
∴CD=6,
∴CE =3,
故选D.
【点睛】
本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.
7、A
【解析】
解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.
8、B
【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
【详解】
【点睛】
本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
9、D
【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;
让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
【详解】
∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
故选D.
【点睛】
本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
10、B
【解析】
直接得出两位数是3的倍数的个数,再利用概率公式求出答案.
【详解】
∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
十位数为3,则两位数是3的倍数的个数为2.
∴得到的两位数是3的倍数的概率为: =.
故答案选:B.
【点睛】
本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣4<x<﹣
【解析】
根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.
故答案为﹣4<x<﹣.
12、
【解析】
连接OA,作OM⊥AB于点M,
∵正六边形ABCDEF的外接圆半径为2cm
∴正六边形的半径为2 cm, 即OA=2cm
在正六边形ABCDEF中,∠AOM=30°,
∴正六边形的边心距是OM= cos30°×OA=(cm)
故答案为.
13、x≠﹣5.
【解析】
根据分母不为零分式有意义,可得答案.
【详解】
由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.
【点睛】
本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.
14、18
【解析】
连接OB,
∵OA=OB,∴∠B=∠A=30°,
∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,
∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,
∴∠BOC=∠B,∴CB=OC=6,
∴AB=AC+BC=18,
故答案为18.
15、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
16、
【解析】
分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可
【详解】
如图,连接BF.
∵△AEF是由△ABE沿AE折叠得到的,
∴BF⊥AE,BE=EF.
∵BC=6,点E为BC的中点,
∴BE=EC=EF=3
根据勾股定理有AE=AB+BE
代入数据求得AE=5
根据三角形的面积公式
得BH=
即可得BF=
由FE=BE=EC,
可得∠BFC=90°
再由勾股定理有BC-BF=CF
代入数据求得CF=
故答案为
【点睛】
此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质
17、﹣1
【解析】
根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题.
【详解】
由题意函数y=1x1+bx的交换函数为y=bx1+1x.
∵y=1x1+bx=,
y=bx1+1x=,
函数y=1x1+bx与它的交换函数图象顶点关于x轴对称,
∴﹣=﹣且,
解得:b=﹣1.
故答案为﹣1.
【点睛】
本题考查了二次函数的性质.理解交换函数的意义是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)25°.
【解析】
试题分析: (1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.
试题解析:(1)∵∠AOC=∠BOD
∴∠AOC -∠COD=∠BOD-∠COD
即∠AOD=∠BOC
∵四边形ABCD是矩形
∴∠A=∠B=90°,AD=BC
∴
∴AO=OB
(2)解:∵AB是的直径,PA与相切于点A,
∴PA⊥AB,
∴∠A=90°.
又∵∠OPA=40°,
∴∠AOP=50°,
∵OB=OC,
∴∠B=∠OCB.
又∵∠AOP=∠B+∠OCB,
∴.
19、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
【解析】
(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
【详解】
解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
解得:,
∴抛物线的表达式为y=﹣x3+x+2,
把E(﹣4,y)代入得:y=﹣6,
∴点E的坐标为(﹣4,﹣6).
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
解得:,
∴直线BD的表达式为y=x﹣2.
把x=0代入y=x﹣2得:y=﹣2,
∴D(0,﹣2).
当点G与点D重合时,G的坐标为(0,﹣2).
∵GF∥x轴,
∴F的纵坐标为﹣2.
将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
解得:x=+3或x=﹣+3.
∵﹣4<x<4,
∴点F的坐标为(﹣+3,﹣2).
∴m=FG=﹣3.
②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
∵﹣<0,
∴m有最大值,
当x=0时,m的最大值为4.
(2)当点F在x轴的左侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
解得:x=﹣3或x=4(舍去),
∴点F的坐标为(﹣3,0).
当点F在x轴的右侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
解得:x=﹣3或x=﹣﹣3(舍去),
∴点F的坐标为(﹣3,).
综上所述,点F的坐标为(﹣3,0)或(﹣3,).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
20、详见解析.
【解析】
试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.
试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.
在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD, OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.
点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.
21、(1)作图见解析;.(2)作图见解析;(3)1.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=1.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
22、 (1)证明见解析(2)四边形AFBE是菱形
【解析】
试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;
(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
(2)解:四边形AFBE是菱形,理由如下:
∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.
考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.
23、一次函数解析式为;反比例函数解析式为;.
【解析】
(1)根据A(-1,0)代入y=kx+2,即可得到k的值;
(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;
(3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.
【详解】
(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,
∴一次函数解析式为y=2x+2;
把C(1,n)代入y=2x+2得n=4,
∴C(1,4),
把C(1,4)代入y=得m=1×4=4,
∴反比例函数解析式为y=;
(2)∵PD∥y轴,
而D(a,0),
∴P(a,2a+2),Q(a,),
∵PQ=2QD,
∴2a+2﹣=2×,
整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),
∴D(2,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.
24、(1)11.4;(2)19.5m.
【解析】
(1)根据直角三角形的性质和三角函数解答即可;
(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.
【详解】
解:(1)在Rt△ABC中,
∵∠BAC=64°,AC=5m,
∴AB=5÷0.44 11.4 (m);
故答案为:11.4;
(2)过点D作DH⊥地面于H,交水平线于点E,
在Rt△ADE中,
∵AD=20m,∠DAE=64°,EH=1.5m,
∴DE=sin64°×AD≈20×0.9≈18(m),
即DH=DE+EH=18+1.5=19.5(m),
答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.
【点睛】
本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.
黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析,共17页。试卷主要包含了的绝对值是等内容,欢迎下载使用。
安庆市2021-2022学年中考数学模拟预测试卷含解析: 这是一份安庆市2021-2022学年中考数学模拟预测试卷含解析,共26页。试卷主要包含了答题时请按要求用笔,用一根长为a,在平面直角坐标系中,已知点A等内容,欢迎下载使用。
2021-2022学年湖北省团风县中考数学模拟预测试卷含解析: 这是一份2021-2022学年湖北省团风县中考数学模拟预测试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,估计介于,下列各式等内容,欢迎下载使用。