终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省襄城区市级名校2022年中考数学全真模拟试题含解析

    立即下载
    加入资料篮
    湖北省襄城区市级名校2022年中考数学全真模拟试题含解析第1页
    湖北省襄城区市级名校2022年中考数学全真模拟试题含解析第2页
    湖北省襄城区市级名校2022年中考数学全真模拟试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省襄城区市级名校2022年中考数学全真模拟试题含解析

    展开

    这是一份湖北省襄城区市级名校2022年中考数学全真模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD长为正整数,则点D的个数共有( )

    A.5个 B.4个 C.3个 D.2个
    2.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )
    A.1,2 B.1,3
    C.4,2 D.4,3
    3.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    4.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为(  )
    A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
    5.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是  

    A.4 B. C.5 D.6
    6.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为( )

    A.(0, 1) B.(1, -1) C.(0, -1) D.(1, 0)
    7.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
    A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
    8.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
    节约用水量(单位:吨)
    1
    1.1
    1.4
    1
    1.5
    家庭数
    4
    6
    5
    3
    1
    这组数据的中位数和众数分别是( )
    A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
    9.下列运算正确的是(  )
    A. =2 B.4﹣=1 C.=9 D.=2
    10.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.反比例函数的图象经过点和,则 ______ .
    12.已知方程的一个根为1,则的值为__________.
    13.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是(  )

    A.1+ B.4+ C.4 D.-1+
    14.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.
    15.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.

    16.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,,DE=6,则EF= .

    三、解答题(共8题,共72分)
    17.(8分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
    收集数据:
    30
    60
    81
    50
    40
    110
    130
    146
    90
    100
    60
    81
    120
    140
    70
    81
    10
    20
    100
    81
    整理数据:
    课外阅读平均时间x(min)
    0≤x<40
    40≤x<80
    80≤x<120
    120≤x<160
    等级
    D
    C
    B
    A
    人数
    3
    a
    8
    b
    分析数据:
    平均数
    中位数
    众数
    80
    m
    n
    请根据以上提供的信息,解答下列问题:
    (1)填空:a=  ,b= ;m=  ,n=  ;
    (2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
    (3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
    18.(8分)根据图中给出的信息,解答下列问题:
    放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
    19.(8分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)

    20.(8分)我们来定义一种新运算:对于任意实数 x、y,“※”为 a※b=(a+1)(b+1)﹣1.
    (1)计算(﹣3)※9
    (2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误)
    (3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.

    21.(8分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.

    22.(10分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.

    23.(12分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?

    24.阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上

    请根据阅读材料,解决下列问题:
    如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.
    (I)旋转中心是点 ,旋转了 (度);
    (II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.

    考点:等腰三角形的性质;勾股定理.
    2、A
    【解析】
    试题分析:通过猜想得出数据,再代入看看是否符合即可.
    解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,
    30+4×3=42,
    故选A.
    点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.
    3、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
    4、C
    【解析】
    依据科学记数法的含义即可判断.
    【详解】
    解:48511111=4.85×117,故本题选择C.
    【点睛】
    把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
    (1)当|a|≥1时,n的值为a的整数位数减1;
    (2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
    5、A
    【解析】
    作于利用直角三角形30度角的性质即可解决问题.
    【详解】
    解:作于H.

    垂直平分线段AB,






    ,,

    故选A.
    【点睛】
    本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    6、B
    【解析】
    试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.
    试题解析:由图形可知,

    对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.
    故旋转中心坐标是P(1,-1)
    故选B.
    考点:坐标与图形变化—旋转.
    7、C
    【解析】
    解:在这一组数据中6是出现次数最多的,故众数是6;
    而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
    平均数是:(3+4+5+6+6)÷5=4.8,
    故选C.
    【点睛】
    本题考查众数;算术平均数;中位数.
    8、D
    【解析】
    分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    详解:这组数据的中位数是;
    这组数据的众数是1.1.
    故选D.
    点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    9、A
    【解析】
    根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.
    【详解】
    A、原式=2,所以A选项正确;
    B、原式=4-3=,所以B选项错误;
    C、原式==3,所以C选项错误;
    D、原式=,所以D选项错误.
    故选A.
    【点睛】
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    10、A
    【解析】
    解:分析题中所给函数图像,
    段,随的增大而增大,长度与点的运动时间成正比.
    段,逐渐减小,到达最小值时又逐渐增大,排除、选项,
    段,逐渐减小直至为,排除选项.
    故选.

    【点睛】
    本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-1
    【解析】
    先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.
    【详解】
    解:∵反比例函数y=的图象经过点(1,6),
    ∴6=,解得k=6,
    ∴反比例函数的解析式为y=.
    ∵点(m,-3)在此函数图象上上,
    ∴-3=,解得m=-1.
    故答案为-1.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    12、1
    【解析】
    欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.
    【详解】
    设方程的另一根为x1,又∵x=1,
    ∴,
    解得m=1.
    故答案为1.
    【点睛】
    本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x2-9x+m=0中求出m的值.
    13、A
    【解析】
    根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
    【详解】
    如图,

    ∵点A坐标为(-2,2),
    ∴k=-2×2=-4,
    ∴反比例函数解析式为y=-,
    ∵OB=AB=2,
    ∴△OAB为等腰直角三角形,
    ∴∠AOB=45°,
    ∵PQ⊥OA,
    ∴∠OPQ=45°,
    ∵点B和点B′关于直线l对称,
    ∴PB=PB′,BB′⊥PQ,
    ∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
    ∴B′P⊥y轴,
    ∴点B′的坐标为(- ,t),
    ∵PB=PB′,
    ∴t-2=|-|=,
    整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
    ∴t的值为.
    故选A.
    【点睛】
    本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
    14、3或
    【解析】
    以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.
    【详解】

    如图作CM⊥AB
    当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF
    ∴△EDF~△DBE
    ∴EF∥CB,设EF交AD于点O
    ∵AO=OD,OE∥BD
    ∴AE= EB=3
    当∠FED=∠DEB时则
    ∠FED=∠FEA=∠DEB=60°
    此时△FED~△DEB,设AE=ED=x,作
    DN⊥AB于N,
    则EN=,DN=,
    ∵DN∥CM,


    ∴x
    ∴BE=6-x=
    故答案为3或
    【点睛】
    本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.
    15、
    【解析】
    利用相似三角形的性质即可求解;
    【详解】
    解:∵ AB∥CD,
    ∴△AEB∽△CED,
    ∴ ,
    ∴ ,
    故答案为 .
    【点睛】
    本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.
    16、1.
    【解析】
    试题分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案为1.
    考点:平行线分线段成比例.

    三、解答题(共8题,共72分)
    17、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本
    【解析】
    (1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;
    (2)达标的学生人数=总人数×达标率,依此即可求解;
    (3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.
    【详解】
    解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;
    (2)(人).
    答:估计达标的学生有300人;
    (3)80×52÷260=16(本).
    答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.
    【点睛】
    本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.
    18、详见解析
    【解析】
    (1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
    (1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
    【详解】
    解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
    设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
    所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
    (1)设应放入大球m个,小球n个,由题意,得
    ,解得:.
    答:如果要使水面上升到50cm,应放入大球4个,小球6个.
    19、公路的宽为20.5米.
    【解析】
    作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.
    【详解】
    解:如图,过点C作CD⊥AE于点D,

    设公路的宽CD=x米,
    ∵∠CBD=45°,
    ∴BD=CD=x,
    在Rt△ACD中,∵∠CAE=30°,
    ∴tan∠CAD==,即=,
    解得:x=≈20.5(米),
    答:公路的宽为20.5米.
    【点睛】
    本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.
    20、(1)-21;(2)正确;(3)运算“※”满足结合律
    【解析】
    (1)根据新定义运算法则即可求出答案.
    (2)只需根据整式的运算证明法则a※b=b※a即可判断.
    (3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.
    【详解】
    (1)(-3)※9=(-3+1)(9+1)-1=-21
    (2)a※b=(a+1)(b+1)-1
    b※a=(b+1)(a+1)-1,
    ∴a※b=b※a,
    故满足交换律,故她判断正确;
    (3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b
    ∵(a※b)※c=(ab+a+b)※c
    =(ab+a+b+1)(c+1)-1
    =abc+ac+ab+bc+a+b+c
    ∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c
    ∴(a※b)※c=a※(b※c)
    ∴运算“※”满足结合律
    【点睛】
    本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.
    21、
    【解析】
    过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.
    【详解】
    解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,

    ∵房子后坡度AB与前坡度AC相等,
    ∴∠BAD=∠CAE,
    ∵∠BAC=120°,
    ∴∠BAD=∠CAE=30°,
    在直角△ABD中,AB=4米,
    ∴BD=2米,
    在直角△ACE中,AC=6米,
    ∴CE=3米,
    ∴a-b=1米.
    【点睛】
    本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.
    22、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.
    【解析】
    (1)根据图1找出8、9、10℃的天数,然后补全统计图即可;
    (2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;
    (3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.
    【详解】
    (1)由图1可知,8℃有2天,9℃有0天,10℃有2天,
    补全统计图如图;

    (2)根据条形统计图,7℃出现的频率最高,为3天,
    所以,众数是7;
    按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,
    所以,中位数为(7+8)=7.5;
    平均数为(6×2+7×3+8×2+10×2+11)=×80=8,
    所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],
    =(8+3+0+8+9),
    =×28,
    =2.8;
    (3)6℃的度数,×360°=72°,
    7℃的度数,×360°=108°,
    8℃的度数,×360°=72°,
    10℃的度数,×360°=72°,
    11℃的度数,×360°=36°,
    作出扇形统计图如图所示.

    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.
    23、(4)60;(4)作图见试题解析;(4)4.
    【解析】
    试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
    (4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
    (4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
    试题解析:(4)被调查的学生人数为:44÷40%=60(人);
    (4)喜欢艺体类的学生数为:60-44-44-46=8(人),
    如图所示:

    全校最喜爱文学类图书的学生约有:4400×=4(人).
    考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
    24、B 60
    【解析】
    分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.
    详解:(1)B,60;
    (2)补全图形如图所示;

    的大小保持不变,
    理由如下:设与交于点
    ∵直线是等边的对称轴
    ∴,
    ∵经顺时针旋转后与重合
    ∴ ,

    ∴点在线段的垂直平分线上

    ∴点在线段的垂直平分线上
    ∴垂直平分,即

    点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.

    相关试卷

    湖北省老河口市市级名校2022年中考数学全真模拟试题含解析:

    这是一份湖北省老河口市市级名校2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了答题时请按要求用笔,估算的运算结果应在等内容,欢迎下载使用。

    湖北省襄城区市级名校2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份湖北省襄城区市级名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列计算结果为a6的是,在一组数据等内容,欢迎下载使用。

    2022年山东滨州阳信县市级名校中考数学全真模拟试题含解析:

    这是一份2022年山东滨州阳信县市级名校中考数学全真模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列各数等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map