|试卷下载
搜索
    上传资料 赚现金
    河北省承德市隆化县2021-2022学年中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    河北省承德市隆化县2021-2022学年中考数学全真模拟试题含解析01
    河北省承德市隆化县2021-2022学年中考数学全真模拟试题含解析02
    河北省承德市隆化县2021-2022学年中考数学全真模拟试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省承德市隆化县2021-2022学年中考数学全真模拟试题含解析

    展开
    这是一份河北省承德市隆化县2021-2022学年中考数学全真模拟试题含解析,共22页。试卷主要包含了答题时请按要求用笔,关于x的方程=无解,则k的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.2018的相反数是( )
    A. B.2018 C.-2018 D.
    2.=(  )
    A.±4 B.4 C.±2 D.2
    3.已知直线与直线的交点在第一象限,则的取值范围是( )
    A. B. C. D.
    4.下面运算正确的是(  )
    A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
    5.不等式5+2x <1的解集在数轴上表示正确的是( ).
    A. B. C. D.
    6.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )

    A.4 对 B.5 对 C.6 对 D.7 对
    7.关于x的方程=无解,则k的值为(  )
    A.0或 B.﹣1 C.﹣2 D.﹣3
    8.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )

    A. B. C. D.
    9.如图,在▱ABCD中,AB=1,AC=4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为(  )

    A.2 B.3 C.4 D.6
    10.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于__________.

    12.的算术平方根是_____.
    13.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.

    14.因式分解:16a3﹣4a=_____.
    15.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
    16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.

    17.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.

    19.(5分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

    (Ⅰ)如图①,当∠BOP=300时,求点P的坐标;
    (Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
    (Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
    20.(8分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.

    (1)若点的横坐标为,求的面积;(用含的式子表示)
    (2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.
    21.(10分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
    (1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=  BD.
    (2)探究证明
    将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
    (3)拓展延伸
    在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.

    22.(10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.
    (1)求证:AE=AF;
    (2)若DE=3,sin∠BDE=,求AC的长.

    23.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
    本数(本)
    频数(人数)
    频率
    5
    a
    0.2
    6
    18
    0.1
    7
    14
    b
    8
    8
    0.16
    合计
    50
    c
    我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1.
    (1)统计表中的a、b、c的值;
    (2)请将频数分布表直方图补充完整;
    (3)求所有被调查学生课外阅读的平均本数;
    (4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.

    24.(14分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
    【详解】2018与-2018只有符号不同,
    由相反数的定义可得2018的相反数是-2018,
    故选C.
    【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
    2、B
    【解析】
    表示16的算术平方根,为正数,再根据二次根式的性质化简.
    【详解】
    解:,
    故选B.
    【点睛】
    本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
    3、C
    【解析】
    根据题意画出图形,利用数形结合,即可得出答案.
    【详解】
    根据题意,画出图形,如图:

    当时,两条直线无交点;
    当时,两条直线的交点在第一象限.
    故选:C.
    【点睛】
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    4、D
    【解析】
    分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
    【详解】
    解:A,,故此选项错误;
    B,,故此选项错误;
    C,,故此选项错误;
    D,,故此选项正确.
    所以D选项是正确的.
    【点睛】
    灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.
    5、C
    【解析】
    先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
    【详解】
    5+1x<1,
    移项得1x<-4,
    系数化为1得x<-1.
    故选C.
    【点睛】
    本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
    6、C
    【解析】
    由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.
    故选C.
    7、A
    【解析】
    方程两边同乘2x(x+3),得
    x+3=2kx,
    (2k-1)x=3,
    ∵方程无解,
    ∴当整式方程无解时,2k-1=0,k=,
    当分式方程无解时,①x=0时,k无解,
    ②x=-3时,k=0,
    ∴k=0或时,方程无解,
    故选A.
    8、B
    【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
    【详解】分三种情况:
    ①当P在AB边上时,如图1,
    设菱形的高为h,
    y=AP•h,
    ∵AP随x的增大而增大,h不变,
    ∴y随x的增大而增大,
    故选项C不正确;
    ②当P在边BC上时,如图2,
    y=AD•h,
    AD和h都不变,
    ∴在这个过程中,y不变,
    故选项A不正确;
    ③当P在边CD上时,如图3,
    y=PD•h,
    ∵PD随x的增大而减小,h不变,
    ∴y随x的增大而减小,
    ∵P点从点A出发沿A→B→C→D路径匀速运动到点D,
    ∴P在三条线段上运动的时间相同,
    故选项D不正确,
    故选B.

    【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.
    9、C
    【解析】
    利用平行四边形的性质得出△ADF∽△EBF,得出=,再根据勾股定理求出BO的长,进而得出答案.
    【详解】
    解:∵在□ABCD中,对角线AC、BD相交于O,
    ∴BO=DO,AO=OC,AD∥BC,
    ∴△ADF∽△EBF,
    ∴=,
    ∵AC=4,
    ∴AO=2,
    ∵AB=1,AC⊥AB,
    ∴BO===3,
    ∴BD=6,
    ∵E是BC的中点,
    ∴==,
    ∴BF=2, FD=4.
    故选C.
    【点睛】
    本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.
    10、B
    【解析】
    先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
    【详解】
    由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
    【点睛】
    本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3
    【解析】
    试题解析:平移CD到C′D′交AB于O′,如图所示,

    则∠BO′D′=∠BOD,
    ∴tan∠BOD=tan∠BO′D′,
    设每个小正方形的边长为a,
    则O′B=,O′D′=,BD′=3a,
    作BE⊥O′D′于点E,
    则BE=,
    ∴O′E=,
    ∴tanBO′E=,
    ∴tan∠BOD=3.
    考点:解直角三角形.
    12、
    【解析】
    ∵=8,()2=8,
    ∴的算术平方根是.
    故答案为:.
    13、﹣1 C.
    【解析】
    ∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,
    ∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);
    ∴﹣1x=9,
    x=﹣1.
    故A表示的数为:x﹣1=﹣1﹣1=﹣6,
    点B表示的数为:2x+1=2×(﹣1)+1=﹣5,
    即等边三角形ABC边长为1,
    数字2012对应的点与﹣4的距离为:2012+4=2016,
    ∵2016÷1=672,C从出发到2012点滚动672周,
    ∴数字2012对应的点将与△ABC的顶点C重合.
    故答案为﹣1,C.
    点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.
    14、4a(2a+1)(2a﹣1)
    【解析】
    首先提取公因式,再利用平方差公式分解即可.
    【详解】
    原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),
    故答案为4a(2a+1)(2a﹣1)
    【点睛】
    本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
    15、
    【解析】
    试题分析:当n=3时,A=≈0.3178,B=1,A<B;
    当n=4时,A=≈0.2679,B=≈0.4142,A<B;
    当n=5时,A=≈0.2631,B=≈0.3178,A<B;
    当n=6时,A=≈0.2134,B=≈0.2679,A<B;
    ……
    以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n≥3时,A、B的关系始终是A<B.
    16、15
    【解析】
    分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
    详解:∵
    当y=127时, 解得:x=43;
    当y=43时,解得:x=15;
    当y=15时, 解得 不符合条件.
    则输入的最小正整数是15.
    故答案为15.
    点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
    17、8个
    【解析】
    根据概率公式结合取出红球的概率即可求出袋中小球的总个数.
    【详解】
    袋中小球的总个数是:2÷=8(个).
    故答案为8个.
    【点睛】
    本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1);(2);(3)
    【解析】
    (1)OA=6,即BC=6,代入,即可得出点B的坐标
    (2)将点B的坐标代入直线l中求出k即可得出解析式
    (3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.
    【详解】
    解:∵OA=6,矩形OABC中,BC=OA
    ∴BC=6
    ∵点B在直线上,
    ,解得x=8
    故点B的坐标为(8,6)
    故答案为(8,6)
    (2)把点的坐标代入得,
    解得:

    (3))∵一次函数,必经过),要使y随x的增大而减小
    ∴y值为
    ∴代入,
    解得.
    【点睛】
    本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.
    19、(Ⅰ)点P的坐标为(,1).
    (Ⅱ)(0<t<11).
    (Ⅲ)点P的坐标为(,1)或(,1).
    【解析】
    (Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.
    (Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,
    △QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案.
    (Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与,即可求得t的值:
    【详解】
    (Ⅰ)根据题意,∠OBP=90°,OB=1.
    在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
    ∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).
    ∴点P的坐标为(,1).
    (Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
    ∴△OB′P≌△OBP,△QC′P≌△QCP.
    ∴∠OPB′=∠OPB,∠QPC′=∠QPC.
    ∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.
    ∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.
    又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.
    由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11-t,CQ=1-m.
    ∴.∴(0<t<11).
    (Ⅲ)点P的坐标为(,1)或(,1).
    过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.

    ∴∠PC′E+∠EPC′=90°.
    ∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.
    ∴△PC′E∽△C′QA.∴.
    ∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,
    ∴.
    ∴.
    ∵,即,∴,即.
    将代入,并化简,得.解得:.
    ∴点P的坐标为(,1)或(,1).
    20、(1);(2)不能成为平行四边形,理由见解析
    【解析】
    (1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
    (2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
    【详解】
    解:(1)∵点在直线上,
    ∴.
    ∵点在的图像上,
    ∴,∴.
    设,
    则.
    ∵∴.
    记的面积为,



    (2)当点为中点时,其坐标为,
    ∴.
    ∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
    ∴,
    ∴,
    ∴与不能互相平分,
    ∴四边形不能成为平行四边形.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.
    21、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.
    【解析】
    (1)根据全等三角形的性质求出DC,AD,BD之间的数量关系
    (2)过点B作BE⊥BD,交MN于点E.AD交BC于O,
    证明,得到,,
    根据为等腰直角三角形,得到,
    再根据,即可解出答案.
    (3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
    在DA上截取一点H,使得CD=DH=1,则易证,
    由即可得出答案.
    【详解】
    解:(1)如图1中,

    由题意:,
    ∴AE=CD,BE=BD,
    ∴CD+AD=AD+AE=DE,
    ∵是等腰直角三角形,
    ∴DE=BD,
    ∴DC+AD=BD,
    故答案为.
    (2).
    证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.

    ∵,
    ∴,
    ∴.
    ∵,,,
    ∴,
    ∴.又∵,
    ∴,
    ∴,,
    ∴为等腰直角三角形,.
    ∵,
    ∴.
    (3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.

    此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,
    ∴.
    【点睛】
    本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
    22、(1)证明见解析;(2)1.
    【解析】
    (1)根据切线的性质和平行线的性质解答即可;
    (2)根据直角三角形的性质和三角函数解答即可.
    【详解】
    (1)连接OD,
    ∵OD=OE,
    ∴∠ODE=∠OED.
    ∵直线BC为⊙O的切线,
    ∴OD⊥BC.
    ∴∠ODB=90°.
    ∵∠ACB=90°,
    ∴OD∥AC.
    ∴∠ODE=∠F.
    ∴∠OED=∠F.
    ∴AE=AF;
    (2)连接AD,
    ∵AE是⊙O的直径,
    ∴∠ADE=90°,
    ∵AE=AF,
    ∴DF=DE=3,
    ∵∠ACB=90°,
    ∴∠DAF+∠F=90°,∠CDF+∠F=90°,
    ∴∠DAF=∠CDF=∠BDE,
    在Rt△ADF中,=sin∠DAF=sin∠BDE=,
    ∴AF=3DF=9,
    在Rt△CDF中,=sin∠CDF=sin∠BDE=,
    ∴CF=DF=1,
    ∴AC=AF﹣CF=1.

    【点睛】
    本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.
    23、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;
    【解析】
    (1)根据百分比=计算即可;
    (2)求出a组人数,画出直方图即可;
    (3)根据平均数的定义计算即可;
    (4)利用样本估计总体的思想解决问题即可;
    【详解】
    (1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;
    (2)补全图形如下:

    (3)所有被调查学生课外阅读的平均本数==6.4(本)
    (4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×=264(名).
    【点睛】
    本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
    24、
    【解析】
    分析:按照实数的运算顺序进行运算即可.
    详解:原式


    点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.

    相关试卷

    河北省承德市隆化县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省承德市隆化县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共14页。试卷主要包含了选择题等内容,欢迎下载使用。

    河北省承德市隆化县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省承德市隆化县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共21页。试卷主要包含了选择题等内容,欢迎下载使用。

    2022届河北省承德市隆化县中考数学全真模拟试卷含解析: 这是一份2022届河北省承德市隆化县中考数学全真模拟试卷含解析,共20页。试卷主要包含了方程的解是.,五名女生的体重等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map