|试卷下载
终身会员
搜索
    上传资料 赚现金
    广西壮族自治区贵港市覃塘区2021-2022学年中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    广西壮族自治区贵港市覃塘区2021-2022学年中考适应性考试数学试题含解析01
    广西壮族自治区贵港市覃塘区2021-2022学年中考适应性考试数学试题含解析02
    广西壮族自治区贵港市覃塘区2021-2022学年中考适应性考试数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西壮族自治区贵港市覃塘区2021-2022学年中考适应性考试数学试题含解析

    展开
    这是一份广西壮族自治区贵港市覃塘区2021-2022学年中考适应性考试数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下面的几何体中,主,已知二次函数y=,下列说法中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    2.下列解方程去分母正确的是( )
    A.由,得2x﹣1=3﹣3x
    B.由,得2x﹣2﹣x=﹣4
    C.由,得2y-15=3y
    D.由,得3(y+1)=2y+6
    3.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是(  )

    A.a+b<0 B.a>|﹣2| C.b>π D.
    4.如果与互补,与互余,则与的关系是( )
    A. B.
    C. D.以上都不对
    5.下面的几何体中,主(正)视图为三角形的是( )
    A. B. C. D.
    6.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为(  )

    A. B.2 C.3 D.1.5
    7.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是(  )
    A.0≤x0≤1 B.0<x0<1且x0≠
    C.x0<0或x0>1 D.0<x0<1
    8.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为(  )
    A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
    9.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )

    A.90° B.135° C.270° D.315°
    10.下列说法中,正确的是( )
    A.两个全等三角形,一定是轴对称的
    B.两个轴对称的三角形,一定是全等的
    C.三角形的一条中线把三角形分成以中线为轴对称的两个图形
    D.三角形的一条高把三角形分成以高线为轴对称的两个图形
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.

    12.计算:﹣1﹣2=_____.
    13.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)

    14.函数的定义域是__________.
    15.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.

    16.已知实数m,n满足,,且,则= .
    17.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.

    三、解答题(共7小题,满分69分)
    18.(10分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.
    (1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;
    (2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
    (3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.

    19.(5分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.

     等级
     得分x(分)
     频数(人)
     A
     95<x≤100
     4
     B
     90<x≤95
     m
     C
     85<x≤90
     n
     D
     80<x≤85
     24
     E
     75<x≤80
     8
     F
     70<x≤75
     4
    请你根据图表中的信息完成下列问题:
    (1)本次抽样调查的样本容量是   .其中m=   ,n=  .
    (2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
    (3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
    (4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
    20.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.

    (1)求证:∠F=∠B;
    (2)若AB=12,BG=10,求AF的长.
    21.(10分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
    (1)求抛物线的解析式,并直接写出点D的坐标;
    (2)当△AMN的周长最小时,求t的值;
    (3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

    22.(10分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣ |+4sin60°;
    23.(12分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
    24.(14分)计算:|﹣1|﹣2sin45°+﹣



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.不是轴对称图形,也不是中心对称图形.故错误;
    B.不是轴对称图形,也不是中心对称图形.故错误;
    C.是轴对称图形,也是中心对称图形.故正确;
    D.不是轴对称图形,是中心对称图形.故错误.
    故选C.
    【点睛】
    掌握好中心对称图形与轴对称图形的概念.
    轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
    中心对称图形是要寻找对称中心,旋转180°后与原图重合.
    2、D
    【解析】
    根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
    【详解】
    A.由,得:2x﹣6=3﹣3x,此选项错误;
    B.由,得:2x﹣4﹣x=﹣4,此选项错误;
    C.由,得:5y﹣15=3y,此选项错误;
    D.由,得:3( y+1)=2y+6,此选项正确.
    故选D.
    【点睛】
    本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
    3、D
    【解析】
    根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.
    【详解】
    a=﹣2,2<b<1.
    A.a+b<0,故A不符合题意;
    B.a<|﹣2|,故B不符合题意;
    C.b<1<π,故C不符合题意;
    D.<0,故D符合题意;
    故选D.
    【点睛】
    本题考查了实数与数轴,利用有理数的运算是解题关键.
    4、C
    【解析】
    根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.
    【详解】
    ∵∠1+∠2=180°
    ∴∠1=180°-∠2
    又∵∠2+∠1=90°
    ∴∠1=90°-∠2
    ∴∠1-∠1=90°,即∠1=90°+∠1.
    故选C.
    【点睛】
    此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.
    5、C
    【解析】
    解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.
    6、A
    【解析】
    分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×,即可推出BC=2BH=,
    详解:作OH⊥BC于H.

    ∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,
    ∴∠BOC=120°,
    ∵OH⊥BC,OB=OC,
    ∴BH=HC,∠BOH=∠HOC=60°,
    在Rt△BOH中,BH=OB•sin60°=1×=,
    ∴BC=2BH=.
    故选A.
    点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.
    7、D
    【解析】
    分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.
    详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==
    当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;
    当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.
    综上所述:m<n,所求x0的取值范围0<x0<1.
    故选D.
    点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.
    8、C
    【解析】
    根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
    【详解】
    解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
    ∵其中一个交点的坐标为,则另一个交点的坐标为,
    故选C.
    【点睛】
    考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.
    9、C
    【解析】
    根据四边形的内角和与直角三角形中两个锐角关系即可求解.
    【详解】
    解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,
    ∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.
    故选:C.
    【点睛】
    此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.
    10、B
    【解析】根据轴对称图形的概念对各选项分析判断即可得解.
    解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;
    B. 两个轴对称的三角形,一定全等,正确;
    C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;
    D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
    【详解】
    解:连接OB,OA′,AA′,
    ∵AA′关于直线MN对称,

    ∵∠AMN=40°,
    ∴∠A′ON=80°,∠BON=40°,
    ∴∠A′OB=120°,
    过O作OQ⊥A′B于Q,
    在Rt△A′OQ中,OA′=2,
    ∴A′B=2A′Q=
    即PA+PB的最小值.
    【点睛】
    本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.
    12、-3
    【解析】
    -1-2=-1+(-2)=-(1+2)=-3,
    故答案为-3.
    13、2a+12b
    【解析】
    如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,

    因为∠ABC<20°,所以,
    翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.
    14、
    【解析】
    根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
    【详解】
    根据题意得:x-1≥0,
    解得:x≥1.
    故答案为:.
    【点睛】
    此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
    15、 .
    【解析】
    当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.
    【详解】
    连接CP、CQ;如图所示:
    ∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短.
    ∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.
    故答案为:.

    【点睛】
    本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.
    16、.
    【解析】
    试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.
    试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.
    ∴原式===,故答案为.
    考点:根与系数的关系.
    17、11π﹣.
    【解析】
    阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.
    【详解】
    解:连接OM,ON.

    ∴OM=3,OC=6,


    ∴扇形ECF的面积
    △ACD的面积
    扇形AOM的面积
    弓形AN的面积
    △OCM的面积
    ∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积
    故答案为.
    【点睛】
    考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.

    三、解答题(共7小题,满分69分)
    18、y=x﹣5
    【解析】
    分析:(1)根据定义,直接变形得到伴生一次函数的解析式;
    (2)求出顶点,代入伴生函数解析式即可求解;
    (3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.
    详解:(1)∵二次函数y=(x﹣1)2﹣4,
    ∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,
    故答案为y=x﹣5;
    (2)∵二次函数y=(x﹣1)2﹣4,
    ∴顶点坐标为(1,﹣4),
    ∵二次函数y=(x﹣1)2﹣4,
    ∴其伴生一次函数的表达式为y=x﹣5,
    ∴当x=1时,y=1﹣5=﹣4,
    ∴(1,﹣4)在直线y=x﹣5上,
    即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
    (3)∵二次函数y=m(x﹣1)2﹣4m,
    ∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,
    ∵P点的横坐标为n,(n>2),
    ∴P的纵坐标为m(n﹣1)2﹣4m,
    即:P(n,m(n﹣1)2﹣4m),
    ∵PQ∥x轴,
    ∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),
    ∴PQ=(n﹣1)2+1﹣n,
    ∵线段PQ的长为,
    ∴(n﹣1)2+1﹣n=,
    ∴n=.
    点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.
    19、(1)80,12,28;(2)36°;(3)140人;(4)
    【解析】
    (1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;
    (2)用E组所占的百分比乘以360°得到α的值;
    (3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;
    (4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.
    【详解】
    (1)24÷30%=80,
    所以样本容量为80;
    m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;
    故答案为80,12,28;
    (2)E等级对应扇形的圆心角α的度数=×360°=36°;
    (3)700×=140,
    所以估计体育测试成绩在A、B两个等级的人数共有140人;
    (4)画树状图如下:

    共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,
    所以恰好抽到甲和乙的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
    20、(1)见解析;(2).
    【解析】
    (1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
    (2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:∵,
    ∴.
    ∴∠GAB=∠B,
    ∵AF是⊙O的切线,
    ∴AF⊥AO.
    ∴∠GAB+∠GAF=90°.
    ∵OE⊥AC,
    ∴∠F+∠GAF=90°.
    ∴∠F=∠GAB,
    ∴∠F=∠B;
    (2)解:连接OG.
    ∵∠GAB=∠B,
    ∴AG=BG.
    ∵OA=OB=6,
    ∴OG⊥AB.
    ∴,
    ∵∠FAO=∠BOG=90°,∠F=∠B,
    ∴△FAO∽△BOG,
    ∴.
    ∴.

    【点睛】
    本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    21、(1)y=x2﹣x,点D的坐标为(2,﹣);(2)t=2;(3)M点的坐标为(2,0)或(6,0).
    【解析】
    (1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;
    (2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;
    (3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,△AME∽△COD,即|t-4|:4=|t2-t |:,当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标.
    【详解】
    解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得
    ,解得,
    ∴抛物线解析式为y=x2-x;
    ∵y=x2-x =-2) 2-;
    ∴点D的坐标为(2,-);
    (2)连接AC,如图①,

    AB==4,
    而OA=4,
    ∴平行四边形OCBA为菱形,
    ∴OC=BC=4,
    ∴C(2,2),
    ∴AC==4,
    ∴OC=OA=AC=AB=BC,
    ∴△AOC和△ACB都是等边三角形,
    ∴∠AOC=∠COB=∠OCA=60°,
    而OC=AC,OM=AN,
    ∴△OCM≌△ACN,
    ∴CM=CN,∠OCM=∠ACN,
    ∵∠OCM+∠ACM=60°,
    ∴∠ACN+∠ACM=60°,
    ∴△CMN为等边三角形,
    ∴MN=CM,
    ∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,
    当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,
    ∴t=2;
    (3)∵C(2,2),D(2,-),
    ∴CD=,
    ∵OD=,OC=4,
    ∴OD2+OC2=CD2,
    ∴△OCD为直角三角形,∠COD=90°,
    设M(t,0),则E(t,t2-t),
    ∵∠AME=∠COD,
    ∴当时,△AME∽△COD,即|t-4|:4=|t2-t |:,
    整理得|t2-t|=|t-4|,
    解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);
    当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,
    解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);
    综上所述,M点的坐标为(2,0)或(6,0).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.
    22、1.
    【解析】
    分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    详解:原式=1+4-(2-2)+4×,
    =1+4-2+2+2,
    =1.
    点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    23、(1);(2)规则是公平的;
    【解析】
    试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
    (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
    试题解析:(1)画树状图为:

    共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
    所以P(小王)=;
    (2)不公平,理由如下:
    ∵P(小王)=,P(小李)=,≠,
    ∴规则不公平.
    点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    24、﹣1
    【解析】
    直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.
    【详解】
    原式=(﹣1)﹣2×+2﹣4
    =﹣1﹣+2﹣4
    =﹣1.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.

    相关试卷

    广西壮族自治区贵港市覃塘区2023-2024学年八年级上学期期中考试数学试题: 这是一份广西壮族自治区贵港市覃塘区2023-2024学年八年级上学期期中考试数学试题,共4页。

    广西壮族自治区贵港市覃塘区2023-2024学年九年级上学期期中考试数学试题: 这是一份广西壮族自治区贵港市覃塘区2023-2024学年九年级上学期期中考试数学试题,文件包含1小数乘法-2023-2024学年人教版数学五年级上册知识梳理+例题引领+分层练习原卷版docx、1小数乘法-2023-2024学年人教版数学五年级上册知识梳理+例题引领+分层练习解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    广西壮族自治区贵港市覃塘区2023-2024学年九年级上学期期中考试数学试题: 这是一份广西壮族自治区贵港市覃塘区2023-2024学年九年级上学期期中考试数学试题,文件包含1小数乘法-2023-2024学年人教版数学五年级上册知识梳理+例题引领+分层练习原卷版docx、1小数乘法-2023-2024学年人教版数学五年级上册知识梳理+例题引领+分层练习解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map