终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    广西南宁市第47中学2022年中考数学猜题卷含解析

    立即下载
    加入资料篮
    广西南宁市第47中学2022年中考数学猜题卷含解析第1页
    广西南宁市第47中学2022年中考数学猜题卷含解析第2页
    广西南宁市第47中学2022年中考数学猜题卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西南宁市第47中学2022年中考数学猜题卷含解析

    展开

    这是一份广西南宁市第47中学2022年中考数学猜题卷含解析,共24页。试卷主要包含了若,则x-y的正确结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )

    A.8 B.10 C.12 D.16
    2.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为(  )

    A.2 B.2 C. D.4
    3.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是(   )

    A. B.a C. D.
    4.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为(  )

    A. B.2 C.3 D.1.5
    5.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为(  )

    A. B. C. D.
    6.一元二次方程x2+2x﹣15=0的两个根为(  )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    7.如图,是的直径,弦,,,则阴影部分的面积为( )

    A.2π B.π C. D.
    8.在平面直角坐标系中,位于第二象限的点是(  )
    A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
    9.若,则x-y的正确结果是( )
    A.-1 B.1 C.-5 D.5
    10.小明解方程的过程如下,他的解答过程中从第(  )步开始出现错误.
    解:去分母,得1﹣(x﹣2)=1①
    去括号,得1﹣x+2=1②
    合并同类项,得﹣x+3=1③
    移项,得﹣x=﹣2④
    系数化为1,得x=2⑤
    A.① B.② C.③ D.④
    11.下列图标中,是中心对称图形的是(  )
    A. B.
    C. D.
    12.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是(  )

    A.BO=OH B.DF=CE C.DH=CG D.AB=AE
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.

    14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.

    15.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.
    16.因式分解:9a3b﹣ab=_____.
    17.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.
    18.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    20.(6分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
    (1)求证:FH=ED;
    (2)当AE为何值时,△AEF的面积最大?

    21.(6分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 

    请根据所给信息,解答以下问题: 表中 ___ ;____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
    22.(8分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
    求反比例函数的表达式和一次函数表达式;
    若点C是y轴上一点,且,直接写出点C的坐标.

    23.(8分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
    (1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);
    (2)若这个输水管道有水部分的水面宽AB=8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径.

    24.(10分)计算:+-2〡+6tan30°
    25.(10分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)

    26.(12分)计算: .
    27.(12分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
    (1)求该抛物线的函数表达式;
    (2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
    (3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
    根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
    ∴AD=1,BF=BC+CF=BC+1,DF=AC;
    又∵AB+BC+AC=8,
    ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
    故选C.
    “点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.
    2、B
    【解析】
    分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.
    详解:
    如图所示,连接OC、OB

    ∵多边形ABCDEF是正六边形,
    ∴∠BOC=60°,
    ∵OC=OB,
    ∴△BOC是等边三角形,
    ∴∠OBM=60°,
    ∴OM=OBsin∠OBM=4×=2.
    故选B.
    点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    3、A
    【解析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
    ∴MG=CG=×a=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    4、A
    【解析】
    分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×,即可推出BC=2BH=,
    详解:作OH⊥BC于H.

    ∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,
    ∴∠BOC=120°,
    ∵OH⊥BC,OB=OC,
    ∴BH=HC,∠BOH=∠HOC=60°,
    在Rt△BOH中,BH=OB•sin60°=1×=,
    ∴BC=2BH=.
    故选A.
    点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.
    5、A
    【解析】
    根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.
    【详解】
    依题意得:

    故选A.
    【点睛】
    考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
    6、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
    7、D
    【解析】
    分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
    详解:连接OD,
    ∵CD⊥AB,
    ∴ (垂径定理),

    即可得阴影部分的面积等于扇形OBD的面积,
    又∵
    ∴ (圆周角定理),
    ∴OC=2,
    故S扇形OBD=
    即阴影部分的面积为.
    故选D.

    点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
    8、D
    【解析】
    点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
    【详解】
    根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
    【点睛】
    本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
    9、A
    【解析】
    由题意,得
    x-2=0,1-y=0,
    解得x=2,y=1.
    x-y=2-1=-1,
    故选:A.
    10、A
    【解析】
    根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.
    【详解】
    =1,
    去分母,得1-(x-2)=x,故①错误,
    故选A.
    【点睛】
    本题考查解分式方程,解答本题的关键是明确解分式方程的方法.
    11、B
    【解析】
    根据中心对称图形的概念 对各选项分析判断即可得解.
    【详解】
    解:A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选B.
    【点睛】
    本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    12、D
    【解析】
    解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
    同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
    ∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
    ∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
    同理可证EC=CG.
    ∵DH=CG,∴DF=CE,故B正确.
    无法证明AE=AB,故选D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x<﹣2或0<x<2
    【解析】
    仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.
    【详解】
    解:如图,

    结合图象可得:
    ①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.
    综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.
    故答案为x<﹣2或0<x<2.
    【点睛】
    本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.
    14、3﹣或1
    【解析】
    分两种情况:情况一:如图一所示,当∠A'DE=90°时;
    情况二:如图二所示,当∠A'ED=90°时.
    【详解】
    解:如图,当∠A'DE=90°时,△A'ED为直角三角形,

    ∵∠A'=∠A=30°,
    ∴∠A'ED=60°=∠BEC=∠B,
    ∴△BEC是等边三角形,
    ∴BE=BC=1,
    又∵Rt△ABC中,AB=1BC=4,
    ∴AE=1,
    设AD=A'D=x,则DE=1﹣x,
    ∵Rt△A'DE中,A'D=DE,
    ∴x=(1﹣x),
    解得x=3﹣,
    即AD的长为3﹣;
    如图,当∠A'ED=90°时,△A'ED为直角三角形,

    此时∠BEC=90°,∠B=60°,
    ∴∠BCE=30°,
    ∴BE=BC=1,
    又∵Rt△ABC中,AB=1BC=4,
    ∴AE=4﹣1=3,
    ∴DE=3﹣x,
    设AD=A'D=x,则
    Rt△A'DE中,A'D=1DE,即x=1(3﹣x),
    解得x=1,
    即AD的长为1;
    综上所述,即AD的长为3﹣或1.
    故答案为3﹣或1.
    【点睛】
    本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.
    15、1
    【解析】
    根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.
    【详解】
    解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
    则1张普通贺卡为:元,
    由题意得:,

    答:剩下的钱恰好还能买1张普通贺卡.
    故答案为:1.
    【点睛】
    本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.
    16、ab(3a+1)(3a-1).
    【解析】
    试题分析:原式提取公因式后,利用平方差公式分解即可.
    试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).
    考点: 提公因式法与公式法的综合运用.
    17、25°或40°或10°
    【解析】
    【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.
    【详解】由题意知△ABD与△DBC均为等腰三角形,
    对于△ABD可能有
    ①AB=BD,此时∠ADB=∠A=80°,
    ∴∠BDC=180°-∠ADB=180°-80°=100°,
    ∠C=(180°-100°)=40°,
    ②AB=AD,此时∠ADB=(180°-∠A)=(180°-80°)=50°,
    ∴∠BDC=180°-∠ADB=180°-50°=130°,
    ∠C=(180°-130°)=25°,
    ③AD=BD,此时,∠ADB=180°-2×80°=20°,
    ∴∠BDC=180°-∠ADB=180°-20°=160°,
    ∠C=(180°-160°)=10°,
    综上所述,∠C度数可以为25°或40°或10°
    故答案为25°或40°或10°
    【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.
    18、(,)
    【解析】
    根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.
    【详解】
    解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,
    则△DEF的边长是△ABC边长的倍,
    ∴点F的坐标为(1×,×),即(,),
    故答案为:(,).
    【点睛】
    本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    20、(1)证明见解析;(2)AE=2时,△AEF的面积最大.
    【解析】
    (1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;
    (2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.
    【详解】
    (1)证明:∵四边形CEFG是正方形,∴CE=EF.
    ∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
    ∴∠FEH=∠DCE.
    在△FEH和△ECD中,
    ,
    ∴△FEH≌△ECD,
    ∴FH=ED.
    (2)解:设AE=a,则ED=FH=4-a,
    ∴S△AEF=AE·FH=a(4-a)=- (a-2)2+2,
    ∴当AE=2时,△AEF的面积最大.
    【点睛】
    本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.
    21、(1)0.3,45;(2);(3)
    【解析】
    (1)根据频数的和为样本容量,频率的和为1,可直接求解;
    (2)根据频率可得到百分比,乘以360°即可;
    (3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.
    【详解】
    (1)a=0.3,b=45
    (2)360°×0.3=108°
    (3)列关系表格为:

    由表格可知,满足题意的概率为:.
    考点:1、频数分布表,2、扇形统计图,3、概率
    22、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).
    【解析】
    (1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;
    (2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.
    【详解】
    (1)∵双曲线过,将代入,解得:.
    ∴所求反比例函数表达式为:.
    ∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.
    (2)由,可得:,∴.
    又∵,∴或,∴,或,.
    【点睛】
    本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.
    23、(1)详见解析;(2)这个圆形截面的半径是5 cm.
    【解析】
    (1)根据尺规作图的步骤和方法做出图即可;
    (2)先过圆心作半径,交于点,设半径为,得出、的长,在中,根据勾股定理求出这个圆形截面的半径.
    【详解】
    (1)如图,作线段AB的垂直平分线l,与弧AB交于点C,作线段AC的垂直平分线l′与直线l交于点O,点O即为所求作的圆心.

    (2)如图,过圆心O作半径CO⊥AB,交AB于点D,
    设半径为r,则AD=AB=4,OD=r-2,
    在Rt△AOD中,r2=42+(r-2)2,解得r=5,
    答:这个圆形截面的半径是5 cm.
    【点睛】
    此题考查了垂径定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.
    24、10 +
    【解析】
    根据实数的性质进行化简即可计算.
    【详解】
    原式=9-1+2-+6×
    =10-
    =10 +
    【点睛】
    此题主要考查实数的计算,解题的关键是熟知实数的性质.
    25、51.96米.
    【解析】
    先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
    【详解】
    解:∵∠CBD=1°,∠CAB=30°,
    ∴∠ACB=30°.
    ∴AB=BC=1.
    在Rt△BDC中,

    ∴(米).
    答:文峰塔的高度CD约为51.96米.
    【点睛】
    本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
    26、10
    【解析】
    【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.
    【详解】原式=1+9-+4
    =10-+
    =10.
    【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.
    27、(1)y=x2+2x﹣3;(2);(3)详见解析.
    【解析】
    试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
    (2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
    (3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
    试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
    ∴B(-3,0),
    设抛物线的表达式为y=a(x+3)(x-1),
    将点D(-4,5)代入,得5a=5,解得a=1,
    ∴抛物线的表达式为y=x2+2x-3;
    (2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.

    设点E(m,m2+2m-3),则F(m,-m+1).
    ∴EF=-m+1-m2-2m+3=-m2-3m+4.
    ∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
    ∴△ACE的面积的最大值为;
    (3)当AD为平行四边形的对角线时:
    设点M的坐标为(-1,a),点N的坐标为(x,y).
    ∴平行四边形的对角线互相平分,
    ∴=,=,
    解得x=-2,y=5-a,
    将点N的坐标代入抛物线的表达式,得5-a=-3,
    解得a=8,
    ∴点M的坐标为(-1,8),
    当AD为平行四边形的边时:
    设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
    ∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
    ∴M(-1,16),
    将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
    ∴M(-1,26),
    综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.

    相关试卷

    2022年广西南宁市马山县重点中学中考数学猜题卷含解析:

    这是一份2022年广西南宁市马山县重点中学中考数学猜题卷含解析,共18页。试卷主要包含了下列图形不是正方体展开图的是,分式的值为0,则x的取值为等内容,欢迎下载使用。

    2022年广西省来宾市中考数学猜题卷含解析:

    这是一份2022年广西省来宾市中考数学猜题卷含解析,共19页。试卷主要包含了下面运算结果为的是,已知,,且,则的值为,一、单选题等内容,欢迎下载使用。

    2022年广西蒙山县中考数学猜题卷含解析:

    这是一份2022年广西蒙山县中考数学猜题卷含解析,共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map