开学活动
搜索
    上传资料 赚现金

    甘肃省定西市临洮县2021-2022学年中考数学押题试卷含解析

    甘肃省定西市临洮县2021-2022学年中考数学押题试卷含解析第1页
    甘肃省定西市临洮县2021-2022学年中考数学押题试卷含解析第2页
    甘肃省定西市临洮县2021-2022学年中考数学押题试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省定西市临洮县2021-2022学年中考数学押题试卷含解析

    展开

    这是一份甘肃省定西市临洮县2021-2022学年中考数学押题试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示,有一条线段是.等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
    A.x1=1,x2=-1 B.x1=1,x2=2
    C.x1=1,x2=0 D.x1=1,x2=3
    2.下列计算正确的是( )
    A.3a2﹣6a2=﹣3
    B.(﹣2a)•(﹣a)=2a2
    C.10a10÷2a2=5a5
    D.﹣(a3)2=a6
    3.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为(  )

    A.12m B.13.5m C.15m D.16.5m
    4.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为(  )

    A.y= B.y= C.y= D.y=﹣
    5.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为(  )

    A.31° B.32° C.59° D.62°
    6.菱形的两条对角线长分别是6cm和8cm,则它的面积是(  )
    A.6cm2 B.12cm2 C.24cm2 D.48cm2
    7.下列调查中,最适合采用普查方式的是(  )
    A.对太原市民知晓“中国梦”内涵情况的调查
    B.对全班同学1分钟仰卧起坐成绩的调查
    C.对2018年央视春节联欢晚会收视率的调查
    D.对2017年全国快递包裹产生的包装垃圾数量的调查
    8.下列各组单项式中,不是同类项的一组是( )
    A.和 B.和 C.和 D.和3
    9.如图所示,有一条线段是()的中线,该线段是( ).

    A.线段GH B.线段AD C.线段AE D.线段AF
    10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.

    12.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.

    13.分解因式:=    .
    14.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为__________.

    15.计算:|-3|-1=__.
    16.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的是_____.

    三、解答题(共8题,共72分)
    17.(8分)解不等式组,并把它的解集表示在数轴上.

    18.(8分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC
    (1)求证:四边形ACDE为平行四边形;
    (2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长.

    19.(8分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
    (1)初三•二班跑得最快的是第   接力棒的运动员;
    (2)发令后经过多长时间两班运动员第一次并列?

    20.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.

    21.(8分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
    (1)求点C和点A的坐标.
    (2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
    ①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
    ②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
    ③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.

    22.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.
    (1)求一次函数与反比例函数的解析式;
    (2)求△AOB的面积.

    23.(12分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人. 

    请你根据图中信息解答下列问题: 
    (1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°; 
    (2)补全条形统计图; 
    (3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.
    24.如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
    (1)直接写出AB所在直线的解析式、点C的坐标、a的值;
    (2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
    (3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
    ∴.∴.故选B.
    2、B
    【解析】
    根据整式的运算法则分别计算可得出结论.
    【详解】
    选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;
    选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;
    选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;
    选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.
    故答案选B.
    考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.
    3、D
    【解析】
    利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.
    【详解】
    ∵∠DEF=∠BCD=90°,∠D=∠D,
    ∴△DEF∽△DCB,
    ∴,
    ∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,
    ∴由勾股定理求得DE=40cm,
    ∴,
    ∴BC=15米,
    ∴AB=AC+BC=1.5+15=16.5(米).
    故答案为16.5m.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
    4、C
    【解析】
    由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.
    【详解】
    ∵S△AOC=4,
    ∴k=2S△AOC=8;
    ∴y=;
    故选C.
    【点睛】
    本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;
    5、A
    【解析】
    根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.
    【详解】
    ∵在△ABC中,AC=BC,
    ∴∠B=∠CAB,
    ∵AE∥BD,∠CAE=118°,
    ∴∠B+∠CAB+∠CAE=180°,
    即2∠B=180°−118°,
    解得:∠B=31°,
    故选A.
    【点睛】
    此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.
    6、C
    【解析】
    已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
    【详解】
    根据对角线的长可以求得菱形的面积,
    根据S=ab=×6cm×8cm=14cm1.
    故选:C.
    【点睛】
    考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
    7、B
    【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    详解:A、调查范围广适合抽样调查,故A不符合题意;
    B、适合普查,故B符合题意;
    C、调查范围广适合抽样调查,故C不符合题意;
    D、调查范围广适合抽样调查,故D不符合题意;
    故选:B.
    点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    8、A
    【解析】
    如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.
    【详解】
    根据题意可知:x2y和2xy2不是同类项.
    故答案选:A.
    【点睛】
    本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.
    9、B
    【解析】
    根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.
    【详解】
    根据三角形中线的定义知:线段AD是△ABC的中线.
    故选B.
    【点睛】
    本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    10、B
    【解析】
    设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.
    【详解】
    解:设商品的进价为x元,售价为每件0.8×200元,由题意得
    0.8×200=x+40
    解得:x=120
    答:商品进价为120元.
    故选:B.
    【点睛】
    此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
    【详解】
    如图,过点A作AF⊥BC于F,

    在Rt△ABC中,∠B=45°,
    ∴BC=AB=2,BF=AF=AB=1,
    ∵两个同样大小的含45°角的三角尺,
    ∴AD=BC=2,
    在Rt△ADF中,根据勾股定理得,DF==
    ∴CD=BF+DF-BC=1+-2=-1,
    故答案为-1.
    【点睛】
    此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
    12、
    【解析】
    分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
    详解:连接AC,交EF于点M,

    ∵AE丄EF,EF丄FC,
    ∴∠E=∠F=90°,
    ∵∠AME=∠CMF,
    ∴△AEM∽△CFM,
    ∴,
    ∵AE=1,EF=FC=3,
    ∴,
    ∴EM=,FM=,
    在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
    在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
    ∴AC=AM+CM=5,
    在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
    ∴AB=,即正方形的边长为.
    故答案为:.
    点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.
    13、
    【解析】
    试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
    先提取公因式后继续应用平方差公式分解即可:。
    14、4
    【解析】
    首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.
    【详解】
    在Rt△AOB中,∵∠ABO=30°,AO=1,
    ∴AB=2,BO=
    ①当点P从O→B时,如图1、图2所示,点Q运动的路程为,

    ②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°

    ∵∠ABO=30°
    ∴∠BAO=60°
    ∴∠OQD=90°﹣60°=30°
    ∴AQ=2AC,
    又∵CQ=,
    ∴AQ=2
    ∴OQ=2﹣1=1,则点Q运动的路程为QO=1,
    ③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,
    ④当点P从A→O时,点Q运动的路程为AO=1,
    ∴点Q运动的总路程为:+1+2﹣+1=4
    故答案为4.
    考点:解直角三角形
    15、2
    【解析】
    根据有理数的加减混合运算法则计算.
    【详解】
    解:|﹣3|﹣1=3-1=2.
    故答案为2.
    【点睛】
    考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.
    16、①②③
    【解析】
    根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
    【详解】
    ①正确.
    理由:
    ∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,
    ∴Rt△ABG≌Rt△AFG(HL);
    ②正确.
    理由:
    EF=DE=CD=2,设BG=FG=x,则CG=6-x.
    在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,
    解得x=1.
    ∴BG=1=6-1=GC;
    ③正确.
    理由:
    ∵CG=BG,BG=GF,
    ∴CG=GF,
    ∴△FGC是等腰三角形,∠GFC=∠GCF.
    又∵Rt△ABG≌Rt△AFG;
    ∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
    ∴∠AGB=∠AGF=∠GFC=∠GCF,
    ∴AG∥CF;

    ④错误.
    理由:
    ∵S△GCE=GC•CE=×1×4=6
    ∵GF=1,EF=2,△GFC和△FCE等高,
    ∴S△GFC:S△FCE=1:2,
    ∴S△GFC=×6=≠1.
    故④不正确.

    ∴正确的个数有1个: ①②③.
    故答案为①②③
    【点睛】
    本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.

    三、解答题(共8题,共72分)
    17、不等式组的解是x≥3;图见解析
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    ∵解不等式①,得x≥3,
    解不等式②,得x≥-1.5,
    ∴不等式组的解是x≥3,
    在数轴上表示为:

    【点睛】
    本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
    18、(1)证明见解析;(2)4.
    【解析】
    (1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC,易证△BEC 是直角三角形,解直角三角形即可解决问题.
    【详解】
    (1)证明:∵四边形 ABCD 是平行四边形,
    ∴AB∥CD,AB=CD,
    ∵AE=AB,
    ∴AE=CD,∵AE∥CD,
    ∴四边形 ACDE 是平行四边形.
    (2)如图,连接 EC.

    ∵AC=AB=AE,
    ∴△EBC 是直角三角形,
    ∵cosB==,BE=6,
    ∴BC=2,
    ∴EC===4.
    【点睛】
    本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    19、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.
    【解析】
    (1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.
    【详解】
    (1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:

    解得:k=,b=﹣,
    即y1=x﹣,
    二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:

    解得:k′=,b′=,
    即y2=x+
    联立方程组,
    解得:,
    所以发令后第37秒两班运动员在275米处第一次并列.
    【点睛】
    本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.
    20、(1);(2)列表见解析,.
    【解析】
    试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
    试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
    小华
    小丽

    -1

    0

    2

    -1

    (-1,-1)

    (-1,0)

    (-1,2)

    0

    (0,-1)

    (0,0)

    (0,2)

    2

    (2,-1)

    (2,0)

    (2,2)

    共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
    ∴P(点M落在如图所示的正方形网格内)==.
    考点:1列表或树状图求概率;2平面直角坐标系.
    21、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)
    【解析】
    (1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
    (2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
    【详解】
    (1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
    ∴A(1,0),B(3,0),
    ∴抛物线的对称轴为x=2,
    将x=2代入抛物线的解析式得:y=-1,
    ∴C(2,-1);
    (2)①将x=0代入抛物线的解析式得:y=3,
    ∴抛物线与y轴交点坐标为(0,3),
    如图所示:作直线y=3,

    由图象可知:直线y=3与“L双抛图形”有3个交点,
    故答案为3;
    ②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
    由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,
    故答案为0<t<1.
    ③如图2所示:

    ∵PQ∥AC且PQ=AC,
    ∴四边形ACQP为平行四边形,
    又∵点C的纵坐标为-1,
    ∴点P的纵坐标为1,
    将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.
    ∴点P的坐标为(+2,1)或(-+2,1),
    当点P(-1,0)时,也满足条件.
    综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.
    22、(1)y=-,y=-2x-4(2)1
    【解析】
    (1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
    (2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
    【详解】
    (1)将A(﹣3,m+1)代入反比例函数y=得,
    =m+1,
    解得m=﹣6,
    m+1=﹣6+1=2,
    所以,点A的坐标为(﹣3,2),
    反比例函数解析式为y=﹣,
    将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
    解得n=1,
    所以,点B的坐标为(1,﹣6),
    将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,

    解得,
    所以,一次函数解析式为y=﹣2x﹣4;
    (2)设AB与x轴相交于点C,
    令﹣2x﹣4=0解得x=﹣2,
    所以,点C的坐标为(﹣2,0),
    所以,OC=2,
    S△AOB=S△AOC+S△BOC,
    =×2×2+×2×6,
    =2+6,
    =1.
    考点:反比例函数与一次函数的交点问题.
    23、(1)126;(2)作图见解析(3)768
    【解析】
    试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;
    (2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人 ;
    (3)用部分估计整体.
    试题解析:(1)126°
    (2)40÷40%-2-16-18-32=32人
    (3)1200×=768人
    考点:统计图
    24、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),
    【解析】
    (1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;
    (2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;
    (3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.
    【详解】
    解:(1)设直线AB解析式为y=kx+b,
    把A(﹣4,0),B(0,﹣2)代入得:,
    解得:,
    ∴直线AB的解析式为y=﹣x﹣2,
    根据题意得:点C的坐标为(2,2),
    把C(2,2)代入二次函数解析式得:a=;
    (2)连接BQ,

    则易得PQ∥OB,且PQ=OB,
    ∴四边形PQBO是平行四边形,
    ∴OP=BQ,
    ∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),
    ∵直线AB的解析式为y=﹣x﹣2,
    ∴可设此时点Q的坐标为(t,﹣t﹣2),
    于是,此时点P的坐标为(t,﹣t),
    ∵点P在抛物线y=x2上,
    ∴﹣t=t2,
    解得:t=0或t=﹣1,
    ∴当t=0,点P与点O重合,不合题意,应舍去,
    ∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);
    (3)P(﹣4,8)或(4,8),
    如备用图所示,延长PQ交x轴于点H,

    设此时点P的坐标为(m,m2),
    则tan∠HPO=,
    又,易得tan∠OBC=,
    当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,
    于是,得,
    解得:m=±4,
    所以P(﹣4,8)或(4,8).
    【点睛】
    此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.

    相关试卷

    2023年甘肃省定西市岷县、临洮县中考数学模拟试卷(5月份)(含解析):

    这是一份2023年甘肃省定西市岷县、临洮县中考数学模拟试卷(5月份)(含解析),共24页。试卷主要包含了选择题,填空题,解答题,得出结论等内容,欢迎下载使用。

    2022年甘肃省定西市岷县中考数学押题试卷(Word解析版):

    这是一份2022年甘肃省定西市岷县中考数学押题试卷(Word解析版),共21页。试卷主要包含了000000823米,将0,23×10-6B,【答案】D,【答案】B等内容,欢迎下载使用。

    2021-2022学年甘肃省定西市临洮县七年级(下)期中数学试卷(含解析):

    这是一份2021-2022学年甘肃省定西市临洮县七年级(下)期中数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map