2022年云南省曲靖市麒麟区第十中学中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( )
每周做家务的时间(小时)
0
1
2
3
4
人数(人)
2
2
3
1
1
A.3,2.5 B.1,2 C.3,3 D.2,2
2.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )
A. B. C. D.±
3.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )
A. B.
C. D.
4.如图所示的几何体的主视图是( )
A. B. C. D.
5.已知反比例函数,下列结论不正确的是( )
A.图象必经过点(﹣1,2) B.y随x的增大而增大
C.图象在第二、四象限内 D.若,则
6.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4 B.3 C.2 D.
7.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为( )
A.0 B.﹣1 C.1 D.72017
8.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B.5 C.6 D.
9.在,,,这四个数中,比小的数有( )个.
A. B. C. D.
10.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于( )
A.2 B.3 C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.
12.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.
13.计算:___.
14.如图,正△ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正△ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留π);若 A 点落在圆上记做第 1 次旋转,将△ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将△ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转……,若此旋转下去,当△ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次.
15.如图所示,数轴上点A所表示的数为a,则a的值是____.
16.因式分解:9x﹣x2=_____.
三、解答题(共8题,共72分)
17.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
18.(8分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:
方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;
方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =.
试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!
19.(8分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;
(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.
20.(8分)已知关于的二次函数
(1)当时,求该函数图像的顶点坐标.
(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
21.(8分)先化简,再求值:,其中m=2.
22.(10分)(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
①∠EAF的度数;
②线段AE,ED,DB之间的数量关系.
23.(12分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.
(1)求证:AE=AD.
(2)若AE=3,CD=4,求AB的长.
24.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.
所以本题这组数据的中位数是1,众数是1.
故选D.
考点:1.众数;1.中位数.
2、D
【解析】
根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组 ,求出方程组的解即可.
【详解】
解:设一次函数的解析式为:y=kx,
把点(−3,2a)与点(8a,−3)代入得出方程组 ,
由①得:,
把③代入②得: ,
解得:.
故选:D.
【点睛】
本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.
3、B
【解析】
根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
【详解】
左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
故选B.
【点睛】
本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
4、C
【解析】
主视图就是从正面看,看列数和每一列的个数.
【详解】
解:由图可知,主视图如下
故选C.
【点睛】
考核知识点:组合体的三视图.
5、B
【解析】
试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
C、命题正确;
D、命题正确.
故选B.
考点:反比例函数的性质
6、B
【解析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
【详解】
把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y轴,
∴C(1,K),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC与△ABD的面积之和为,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案为B.
【点睛】
:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
7、B
【解析】
根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.
【详解】
解:由题意,得
a=-4,b=1.
(a+b)2017=(-1)2017=-1,
故选B.
【点睛】
本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.
8、B
【解析】
易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.
【详解】
若点E在BC上时,如图
∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,
∴∠CFE=∠AEB,
∵在△CFE和△BEA中,
,
∴△CFE∽△BEA,
由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,
∴,
当y=时,代入方程式解得:x1=(舍去),x2=,
∴BE=CE=1,∴BC=2,AB=,
∴矩形ABCD的面积为2×=5;
故选B.
【点睛】
本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.
9、B
【解析】
比较这些负数的绝对值,绝对值大的反而小.
【详解】
在﹣4、﹣、﹣1、﹣这四个数中,比﹣2小的数是是﹣4和﹣.故选B.
【点睛】
本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.
10、A
【解析】
分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.
详解:如图,
∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,
∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
∴A′E∥AB,
∴△DA′E∽△DAB,
则,即,
解得A′D=2或A′D=-(舍),
故选A.
点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
过点作于,根据三角形的性质及三角形内角和定理可计算
再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
【详解】
如图,过点作于,
∵,
∴.
∵将绕点逆时针旋转,使点落在点处,此时点落在点处,
∴
∵
∴
在中,∵
∴
∴,
在中,∵,
∴,
∴.
故答案为.
【点睛】
本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
12、45°
【解析】
试题解析:
如图,连接CE,
∵AB=2,BC=1,
∴DE=EF=1,CD=GF=2,
在△CDE和△GFE中
∴△CDE≌△GFE(SAS),
∴CE=GE,∠CED=∠GEF,
故答案为
13、
【解析】
直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.
【详解】
原式.
故答案为.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
14、,1.
【解析】
首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.
【详解】
如图,连接OA′、OB、OC.
∵OB=OC=,BC=2,
∴△OBC是等腰直角三角形,
∴∠OBC=45°;
同理可证:∠OBA′=45°,
∴∠A′BC=90°;
∵∠ABC=60°,
∴∠A′BA=90°-60°=30°,
∴∠C′BC=∠A′BA=30°,
∴当点A第一次落在圆上时,则点C运动的路线长为:.
∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,
2017÷12=1.08,
∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,
故答案为:,1.
【点睛】
本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.
15、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
【点睛】
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
16、x(9﹣x)
【解析】
试题解析:
故答案为
点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
三、解答题(共8题,共72分)
17、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
【解析】
分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.52.
∵在这组数据中,1.8出现了16次,出现的次数最多,
∴这组数据的众数为1.8.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
∴这组数据的中位数为1.5.
(Ⅲ)∵在所抽取的样本中,质量为的数量占.
∴由样本数据,估计这2500只鸡中,质量为的数量约占.
有.
∴这2500只鸡中,质量为的约有200只.
点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
18、方案二能获得更大的利润;理由见解析
【解析】
方案一:由利润=(实际售价-进价)×销售量,列出函数关系式,再用配方法求最大利润;
方案二:由利润=(售价-进价)×500p-广告费用,列出函数关系式,再用配方法求最大利润.
【详解】
解:设涨价x元,利润为y元,则
方案一:涨价x元时,该商品每一件利润为:50+x−40,销售量为:500−10x,
∴,
∵当x=20时,y最大=9000,
∴方案一的最大利润为9000元;
方案二:该商品售价利润为=(50−40)×500p,广告费用为:1000m元,
∴,
∴方案二的最大利润为10125元;
∴选择方案二能获得更大的利润.
【点睛】
本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值.
19、 (1) y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).
【解析】
(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;
(2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;
(3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.
【详解】
(1)过点A作AH⊥x轴于点H,
∵AO=OB=2,∠AOB=120°,
∴∠AOH=60°,
∴OH=1,AH=,
∴A点坐标为:(-1,),B点坐标为:(2,0),
将两点代入y=ax2+bx得:
,
解得:,
∴抛物线的表达式为:y=x2-x;
(2)如图,
∵C(1,-),
∴tan∠EOC=,
∴∠EOC=30°,
∴∠POC=90°+30°=120°,
∵∠AOE=120°,
∴∠AOE=∠POC=120°,
∵OA=2OE,OC=,
∴当OP=OC或OP′=2OC时,△POC与△AOE相似,
∴OP=,OP′=,
∴点P坐标为(0,)或(0,).
(3)如图,取Q(,0).连接AQ,QE′.
∵
,∠QOE′=∠BOE′,
∴△OE′Q∽△OBE′,
∴,
∴E′Q=BE′,
∴AE′+BE′=AE′+QE′,
∵AE′+E′Q≥AQ,
∴E′A+E′B的最小值就是线段AQ的长,最小值为.
【点睛】
本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.
20、(1) ,顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1 ,②当a<0时,y1>y2 .
【解析】
试题分析:
(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;
(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;
(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a<0两种情况分别讨论即可y1和y2的大小关系了.
试题解析:
(1)把a=2,b=4代入得:,
∴此时二次函数的图象的顶点坐标为(1,-4);
(2)由题意,把(m,t)和(-m,-t)代入得:
①,②,
由①+②得:,解得:;
(3)把点(1,0)代入得a-b-2=0,
∴b=a-2,
∴此时该二次函数图象的对称轴为直线:,
①当a>0时,,,
∵此时,且抛物线开口向上,
∴中,点B距离对称轴更远,
∴y1
∵此时,且抛物线开口向下,
∴中,点B距离对称轴更远,
∴y1>y2;
综上所述,当a>0时,y1
点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;
21、,原式.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.
【详解】
原式,
当m=2时,原式.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
22、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1
【解析】
试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.
试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
②AE1+DB1=DE1,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.
23、(1)证明见解析(2)
【解析】
(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.
【详解】
(1)证明:连接OC,如图所示,
∵CD⊥AB,AE⊥CF,
∴∠AEC=∠ADC=90°,
∵CF是圆O的切线,
∴CO⊥CF,即∠ECO=90°,
∴AE∥OC,
∴∠EAC=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠EAC=∠CAO,
在△CAE和△CAD中,
,
∴△CAE≌△CAD(AAS),
∴AE=AD;
(2)解:连接CB,如图所示,
∵△CAE≌△CAD,AE=3,
∴AD=AE=3,
∴在Rt△ACD中,AD=3,CD=4,
根据勾股定理得:AC=5,
在Rt△AEC中,cos∠EAC==,
∵AB为直径,
∴∠ACB=90°,
∴cos∠CAB==,
∵∠EAC=∠CAB,
∴=,即AB=.
【点睛】
本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.
24、解:(1)AF与圆O的相切.理由为:
如图,连接OC,
∵PC为圆O切线,∴CP⊥OC.
∴∠OCP=90°.
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB.
∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.
∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,
∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.
∴AF为圆O的切线,即AF与⊙O的位置关系是相切.
(2)∵△AOF≌△COF,∴∠AOF=∠COF.
∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.
∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.
∵S△AOF=•OA•AF=•OF•AE,∴AE=.
∴AC=2AE=.
【解析】
试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;
(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.
试题解析:(1)连接OC,如图所示:
∵AB是⊙O直径,
∴∠BCA=90°,
∵OF∥BC,
∴∠AEO=90°,∠1=∠2,∠B=∠3,
∴OF⊥AC,
∵OC=OA,
∴∠B=∠1,
∴∠3=∠2,
在△OAF和△OCF中,
,
∴△OAF≌△OCF(SAS),
∴∠OAF=∠OCF,
∵PC是⊙O的切线,
∴∠OCF=90°,
∴∠OAF=90°,
∴FA⊥OA,
∴AF是⊙O的切线;
(2)∵⊙O的半径为4,AF=3,∠OAF=90°,
∴OF==1
∵FA⊥OA,OF⊥AC,
∴AC=2AE,△OAF的面积=AF•OA=OF•AE,
∴3×4=1×AE,
解得:AE=,
∴AC=2AE=.
考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.
2023年云南省曲靖市中考数学二模试卷(含解析): 这是一份2023年云南省曲靖市中考数学二模试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年云南省曲靖市麒麟区中考数学一模试卷(含解析): 这是一份2023年云南省曲靖市麒麟区中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年云南省曲靖市麒麟区中考数学一模试卷(含解析): 这是一份2023年云南省曲靖市麒麟区中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。