2022年四川省德阳市中学江县市级名校中考数学模试卷含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A.B.
C.D.
2.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).
A.B.C.D.
3.不等式组的解集在数轴上表示正确的是( )
A.B.C.D.
4.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根
5.下列各图中,∠1与∠2互为邻补角的是( )
A.B.
C.D.
6.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是( )
A.B.C.D.2
7.下列方程中,没有实数根的是( )
A.B.
C.D.
8.如图,在中,分别在边边上,已知,则的值为( )
A.B.C.D.
9.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是( )
A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外
C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外
10.估计﹣1的值在( )
A.1和2之间B.2和3之间C.3和4之间D.4和5之间
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在正方形中,,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,,则和之间的关系是__________(用含的代数式表示).
12.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )
A.1+B.4+C.4D.-1+
13.分解因式:2x2﹣8=_____________
14.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______
15.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.
16.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.
三、解答题(共8题,共72分)
17.(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.
18.(8分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
19.(8分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.
(1)求证:四边形ENFM为平行四边形;
(2)当四边形ENFM为矩形时,求证:BE=BN.
20.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.
21.(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
22.(10分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
23.(12分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲,乙两组工作一天,商店各应付多少钱?
(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
24.根据图中给出的信息,解答下列问题:
放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
【详解】
阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【点睛】
考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
2、B
【解析】
如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.
【详解】
如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B
【点睛】
本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.
3、A
【解析】
分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.
详解:
由①得,x≤1,
由②得,x>-1,
故此不等式组的解集为:-1
故选A.
点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4、C
【解析】
试题分析:由得,,即是判断函数与函数的图象的交点情况.
因为函数与函数的图象只有一个交点
所以方程只有一个实数根
故选C.
考点:函数的图象
点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.
5、D
【解析】
根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.
故选D.
6、C
【解析】
连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.
【详解】
解:如图,连接OB,
∵PB切⊙O于点B,
∴∠OBP=90°,
∵BP=6,∠P=30°,
∴∠POB=60°,OD=OB=BPtan30°=6×=2,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵OD⊥AB,
∴∠OCB=90°,
∴∠OBC=30°,
则OC=OB=,
∴CD=.
故选:C.
【点睛】
本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.
7、B
【解析】
分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
【详解】
解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
故选:B.
【点睛】
本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
8、B
【解析】
根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
【详解】
解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
9、D
【解析】
先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.
【详解】
由题意可求出∠A=30°,AB=2BC=4, 由勾股定理得AC==2,
AB=4>3, AC=2>3,点B、点C都在⊙A外.
故答案选D.
【点睛】
本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.
10、B
【解析】
根据,可得答案.
【详解】
解:∵,
∴,
∴
∴﹣1的值在2和3之间.
故选B.
【点睛】
本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、或
【解析】
当F在边AB上时,如图1作辅助线,先证明≌,得,,根据正切的定义表示即可;
当F在BA的延长线上时,如图2,同理可得:≌,表示AF的长,同理可得结论.
【详解】
解:分两种情况:
当F在边AB上时,如图1,
过E作,交AB于G,交DC于H,
四边形ABCD是正方形,
,,,
,,
,
,
≌,
,
,
,
中,,
即;
当F在BA的延长线上时,如图2,
同理可得:≌,
,
,
,
中,.
【点睛】
本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论.
12、A
【解析】
根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
【详解】
如图,
∵点A坐标为(-2,2),
∴k=-2×2=-4,
∴反比例函数解析式为y=-,
∵OB=AB=2,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y轴,
∴点B′的坐标为(- ,t),
∵PB=PB′,
∴t-2=|-|=,
整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
∴t的值为.
故选A.
【点睛】
本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
13、2(x+2)(x﹣2)
【解析】
先提公因式,再运用平方差公式.
【详解】
2x2﹣8,
=2(x2﹣4),
=2(x+2)(x﹣2).
【点睛】
考核知识点:因式分解.掌握基本方法是关键.
14、
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
由图象可知:抛物线开口方向向下,则,
对称轴直线位于y轴右侧,则a、b异号,即,
抛物线与y轴交于正半轴,则,,故正确;
对称轴为,,故正确;
由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,
所以当时,,即,故正确;
抛物线与x轴有两个不同的交点,则,所以,故错误;
当时,,故正确.
故答案为.
【点睛】
本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
15、
【解析】
先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理 即可出圆锥的高.
【详解】
圆心角为120°,半径为6cm的扇形的弧长为4cm
∴圆锥的底面半径为2,
故圆锥的高为=4cm
【点睛】
此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.
16、(6,4)或(﹣4,﹣6)
【解析】
设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.
【详解】
解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
当点P在第一象限时,x+x-2=10,
解得x=6,
∴x-2=4,
∴P(6,4);
当点P在第三象限时,-x-x+2=10,
解得x=-4,
∴x-2=-6,
∴P(-4,-6).
故答案为:(6,4)或(-4,-6).
【点睛】
本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.
三、解答题(共8题,共72分)
17、10
【解析】
试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.
考点:相似的应用
18、 (1)450、63; ⑵36°,图见解析; (3)2460 人.
【解析】
(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.
(2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;
(3)由总人数乘以“绿色出行”的百分比,即可得到结果.
【详解】
(1) 参与本次问卷调查的学生共有:(人);
选择类的人数有:
故答案为450、63;
(2)类所占的百分比为:
类对应的扇形圆心角的度数为:
选择类的人数为:(人).
补全条形统计图为:
(3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
19、(1)证明见解析;(2)证明见解析.
【解析】
分析:
(1)由已知条件易得∠EAG=∠FCG,AG=GC结合∠AGE=∠FGC可得△EAG≌△FCG,从而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;
(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,则∠BAC=∠ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.
详解:
(1)∵四边形ABCD为平行四四边形边形,
∴AB//CD.
∴∠EAG=∠FCG.
∵点G为对角线AC的中点,
∴AG=GC.
∵∠AGE=∠FGC,
∴△EAG≌△FCG.
∴EG=FG.
同理MG=NG.
∴四边形ENFM为平行四边形.
(2)∵四边形ENFM为矩形,
∴EF=MN,且EG=,GN=,
∴EG=NG,
又∵AG=CG,∠AGE=∠CGN,
∴△EAG≌△NCG,
∴∠BAC=∠ACB ,AE=CN,
∴AB=BC,
∴AB-AE=CB-CN,
∴BE=BN.
点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.
20、现在平均每天清雪量为1立方米.
【解析】
分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.
详解:设现在平均每天清雪量为x立方米,
由题意,得
解得 x=1.
经检验x=1是原方程的解,并符合题意.
答:现在平均每天清雪量为1立方米.
点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.
21、 (1) 40%;(2) 2616.
【解析】
(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;
(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.
【详解】
解:(1)设A市投资“改水工程”年平均增长率是x,则
.解之,得或(不合题意,舍去).
所以,A市投资“改水工程”年平均增长率为40%.
(2)600+600×1.4+1176=2616(万元).
A市三年共投资“改水工程”2616万元.
22、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BE∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=CF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
【点睛】
本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
23、(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.
【解析】
(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;
(2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;
(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.
【详解】
解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.
由题意得:
解得:
答:甲、乙两组工作一天,商店各应付300元和140元
(2)单独请甲组需要的费用:300×12=3600元.
单独请乙组需要的费用:24×140=3360元.
答:单独请乙组需要的费用少.
(3)请两组同时装修,理由:
甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;
乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;
甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;
因为5120<6000<8160,所以甲乙合作损失费用最少,
答:甲乙合作施工更有利于商店.
【点睛】
考查列二元一次方程组解实际问题的运用,工作总量=工作效率×工作时间的运用,设计推理方案的运用,解答时建立方程组求出甲乙单独完成的工作时间是关键.
24、详见解析
【解析】
(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
【详解】
解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
(1)设应放入大球m个,小球n个,由题意,得
,解得:.
答:如果要使水面上升到50cm,应放入大球4个,小球6个.
种类
A
B
C
D
E
F
上学方式
电动车
私家车
公共交通
自行车
步行
其他
四川省德阳市中学江县2021-2022学年中考联考数学试卷含解析: 这是一份四川省德阳市中学江县2021-2022学年中考联考数学试卷含解析,共20页。
四川省德阳市中学江县2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份四川省德阳市中学江县2021-2022学年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了不等式组的解集是,下列四个实数中,比5小的是,下列计算结果等于0的是等内容,欢迎下载使用。
2022届四川省德阳中江县初中市级名校中考数学全真模拟试卷含解析: 这是一份2022届四川省德阳中江县初中市级名校中考数学全真模拟试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。