|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年山东省日照实验中学中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2022年山东省日照实验中学中考猜题数学试卷含解析01
    2022年山东省日照实验中学中考猜题数学试卷含解析02
    2022年山东省日照实验中学中考猜题数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省日照实验中学中考猜题数学试卷含解析

    展开
    这是一份2022年山东省日照实验中学中考猜题数学试卷含解析,共22页。试卷主要包含了关于x的方程=无解,则k的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.一元二次方程x2+x﹣2=0的根的情况是(  )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.只有一个实数根 D.没有实数根
    2.化简的结果为( )
    A.﹣1 B.1 C. D.
    3.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是(  )
    A.﹣1 B.±2 C.2 D.﹣2
    4.如下图所示,该几何体的俯视图是 ( )

    A. B. C. D.
    5.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
    A. B. C. D.
    6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
    班级
    参加人数
    平均数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    某同学分析上表后得出如下结论:
    ①甲、乙两班学生的平均成绩相同;
    ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
    ③甲班成绩的波动比乙班大.
    上述结论中,正确的是(  )
    A.①② B.②③ C.①③ D.①②③
    7.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是(  )

    A. B. C. D.
    8.关于x的方程=无解,则k的值为(  )
    A.0或 B.﹣1 C.﹣2 D.﹣3
    9.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    10.关于的方程有实数根,则整数的最大值是( )
    A.6 B.7 C.8 D.9
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
    12.已知点 M(1,2)在反比例函数的图象上,则 k=____.
    13.的算术平方根是_______.
    14.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.

    15.若 m、n 是方程 x2+2018x﹣1=0 的两个根,则 m2n+mn2﹣mn=_________.
    16.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.

    三、解答题(共8题,共72分)
    17.(8分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.
    如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.
    18.(8分)某商城销售A,B两种自行车型自行车售价为2 100元辆,B型自行车售价为1 750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
    求每辆A,B两种自行车的进价分别是多少?
    现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
    19.(8分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.




    每辆汽车能装的数量(吨)
    4
    2
    3
    每吨水果可获利润(千元)
    5
    7
    4
    (1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?
    (2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)
    (3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
    20.(8分)计算:解方程:
    21.(8分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:
    工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?

    22.(10分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.
    23.(12分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
    (1)求直线AB的解析式;
    (2)根据图象写出当y1>y2时,x的取值范围;
    (3)若点P在y轴上,求PA+PB的最小值.

    24.如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    ∵∆=12-4×1×(-2)=9>0,
    ∴方程有两个不相等的实数根.
    故选A.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    2、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    3、D
    【解析】
    根据一元二次方程根与系数的关系列出方程求解即可.
    【详解】
    设方程的两根分别为x1,x1,
    ∵x1+(k1-4)x+k-1=0的两实数根互为相反数,
    ∴x1+x1,=-(k1-4)=0,解得k=±1,
    当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;
    当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;
    ∴k=-1.
    故选D.
    【点睛】
    本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=− ,x1x1= ,反过来也成立.
    4、B
    【解析】
    根据俯视图是从上面看到的图形解答即可.
    【详解】
    从上面看是三个长方形,故B是该几何体的俯视图.
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    5、A
    【解析】
    根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.
    【详解】
    由题意可得,

    故选A.
    【点睛】
    本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    6、D
    【解析】
    分析:根据平均数、中位数、方差的定义即可判断;
    详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
    根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
    根据方差可知,甲班成绩的波动比乙班大.
    故①②③正确,
    故选D.
    点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    7、C
    【解析】
    根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
    【详解】
    ∵△ABC为等边三角形,
    ∴∠B=∠C=60°,BC=AB=a,PC=a-x.
    ∵∠APD=60°,∠B=60°,
    ∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
    ∴∠BAP=∠CPD,
    ∴△ABP∽△PCD,
    ∴,即,
    ∴y=- x2+x.
    故选C.
    【点睛】
    考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
    8、A
    【解析】
    方程两边同乘2x(x+3),得
    x+3=2kx,
    (2k-1)x=3,
    ∵方程无解,
    ∴当整式方程无解时,2k-1=0,k=,
    当分式方程无解时,①x=0时,k无解,
    ②x=-3时,k=0,
    ∴k=0或时,方程无解,
    故选A.
    9、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    10、C
    【解析】
    方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
    【详解】
    当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
    当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
    取最大整数,即a=1.
    故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、50(1﹣x)2=1.
    【解析】
    由题意可得,
    50(1−x)²=1,
    故答案为50(1−x)²=1.
    12、-2
    【解析】
    =1×(-2)=-2
    13、3
    【解析】
    根据算术平方根定义,先化简,再求的算术平方根.
    【详解】
    因为=9
    所以的算术平方根是3
    故答案为3
    【点睛】
    此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.
    14、45
    【解析】
    试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.
    ∵AE=AC,
    ∴∠ACE=∠AEC=x+y,
    ∵BD=BC,
    ∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.
    在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,
    ∴x+(90°-y)+(x+y)=180°,
    解得x=45°,
    ∴∠DCE=45°.
    考点:1.等腰三角形的性质;2.三角形内角和定理.
    15、1
    【解析】
    根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m2n+mm2﹣mn分解因式得到 mn(m+n﹣1),然后利用整体代入的方法计算.
    【详解】
    解:∵m、n 是方程 x2+2018x﹣1=0 的两个根,
    则原式=mn(m+n﹣1)
    =﹣1×(﹣2018﹣1)
    =﹣1×(﹣1)
    =1,
    故答案为:1.
    【点睛】
    本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别
    为与,则解题时要注意这两个关 系的合理应用.
    16、(,),(-4,-5)
    【解析】
    求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.
    【详解】
    令y=0代入y=-x2-2x+3,
    ∴x=-3或x=1,
    ∴OA=1,OB=3,
    令x=0代入y=-x2-2x+3,
    ∴y=3,
    ∴OC=3,
    当点D在x轴下方时,
    ∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,
    ∵OB=OC,
    ∴∠CBO=45°,
    ∴BG=EG,OB=OC=3,
    ∴由勾股定理可知:BC=3,
    设EG=x,
    ∴CG=3-x,
    ∵∠DCB=∠ACO.
    ∴tan∠DCB=tan∠ACO=,
    ∴,
    ∴x=,
    ∴BE=x=,
    ∴OE=OB-BE=,
    ∴E(-,0),
    设CE的解析式为y=mx+n,交抛物线于点D2,
    把C(0,3)和E(-,0)代入y=mx+n,
    ∴,解得:.
    ∴直线CE的解析式为:y=2x+3,
    联立
    解得:x=-4或x=0,
    ∴D2的坐标为(-4,-5)
    设点E关于BC的对称点为F,
    连接FB,

    ∴∠FBC=45°,
    ∴FB⊥OB,
    ∴FB=BE=,
    ∴F(-3,)
    设CF的解析式为y=ax+b,
    把C(0,3)和(-3,)代入y=ax+b

    解得:,
    ∴直线CF的解析式为:y=x+3,
    联立
    解得:x=0或x=-
    ∴D1的坐标为(-,)
    故答案为(-,)或(-4,-5)
    【点睛】
    本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.

    三、解答题(共8题,共72分)
    17、 (1)证明见解析;(2)证明见解析;(3)CE=.
    【解析】
    (1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.
    (2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.
    (3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.
    【详解】
    解:(1)如图1所示,连接OB,

    ∵∠A=60°,OA=OB,
    ∴△AOB为等边三角形,
    ∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,
    ∵△DBE为等边三角形,
    ∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,
    ∴∠ABD=∠OBE,
    ∴△ADB≌△OBE(SAS),
    ∴OE=AD;
    (2)如图2所示,

    由(1)可知△ADB≌△OBE,
    ∴∠BOE=∠A=60°,∠ABD=∠OBE,
    ∵∠BOA=60°,
    ∴∠EOC=∠BOE =60°,
    又∵OB=OC,OE=OE,
    ∴△BOE≌△COE(SAS),
    ∴∠OCE=∠OBE,
    ∴∠OCE=∠ABD;
    (3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,

    ∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,
    ∴△ADB≌△MQD(ASA),
    ∴AB=MQ,
    ∵∠A=60°,∠ABC=90°,
    ∴∠ACB=30°,
    ∴AB==AO=CO=OG,
    ∴MQ=OG,
    ∵AB∥GO,
    ∴MQ∥GO,
    ∴四边形MQOG为平行四边形,
    设AD为x,则OE=x,OF=2x,
    ∵OD=3,
    ∴OA=OG=3+x,GF=3﹣x,
    ∵DQ=AD=x,
    ∴OQ=MG=3﹣x,
    ∴MG=GF,
    ∵∠DOG=60°,
    ∴∠MGF=120°,
    ∴∠GMF=∠GFM=30°,
    ∵∠QMD=∠ABD=∠ODE,∠ODN=30°,
    ∴∠DMF=∠EDN,
    ∵OD=3,
    ∴ON=,DN=,
    ∵tan∠BMF=,
    ∴tan∠NDE=,
    ∴ ,
    解得x=1,
    ∴NE=,
    ∴DE=,
    ∴CE=.
    故答案为(1)证明见解析;(2)证明见解析;(3)CE=.
    【点睛】
    本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.
    18、(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
    【解析】
    (1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果; 
    (2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.
    【详解】
    (1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,
    根据题意,得=,
    解得x=1600,
    经检验,x=1600是原方程的解,
    x+10=1 600+10=2 000,
    答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;
    (2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
    根据题意,得,
    解得:33≤m≤1,
    ∵m为正整数,
    ∴m=34,35,36,37,38,39,1.
    ∵y=﹣50m+15000,k=﹣50<0,
    ∴y随m的增大而减小,∴当m=34时,y有最大值,
    最大值为:﹣50×34+15000=13300(元).
    答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
    【点睛】
    本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.
    19、(1)乙种水果的车有2辆、丙种水果的汽车有6辆;(2)乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆;(3)见解析.
    【解析】
    (1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解
    答;
    (2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组即可解答;
    (3)设总利润为w千元,表示出w=10m+1.列出不等式组确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.
    【详解】
    解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:

    解得:
    答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.
    (2)设装运乙、丙水果的车分别为a辆,b辆,得:

    解得:
    答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.
    (3)设总利润为w千元,
    w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.

    ∴13≤m≤15.5,
    ∵m为正整数,
    ∴m=13,14,15,
    在w=10m+1中,w随m的增大而增大,
    ∴当m=15时,W最大=366(千元),
    答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.
    【点睛】
    此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值,需确定
    自变量的取值范围.
    20、 (1)10;(2)原方程无解.
    【解析】
    (1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)原式==10;
    (2)去分母得:3(5x﹣4)+3x﹣6=4x+10,
    解得:x=2,
    经检验:x=2是增根,原方程无解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    21、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.
    【解析】
    分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.
    本题解析:
    解:(1)若7.5x=70,得x=>4,不符合题意;
    则5x+10=70,
    解得x=12.
    答:工人甲第12天生产的产品数量为70件.
    (2)由函数图象知,当0≤x≤4时,P=40,
    当4 将(4,40)、(14,50)代入,得解得
    ∴P=x+36.
    ①当0≤x≤4时,W=(60-40)·7.5x=150x,
    ∵W随x的增大而增大,
    ∴当x=4时,W最大=600;
    ②当4 ∴当x=11时,W最大=845.
    ∵845>600,
    ∴当x=11时,W取得最大值845元.
    答:第11天时,利润最大,最大利润是845元.
    点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.
    22、 (1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【解析】
    (1)根据题意只需要证明a2+b2=c2,即可解答
    (2)根据题意将n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再将直角三角形的一边长为37,分别分三种情况代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
    【详解】
    (1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
    c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
    ∴a2+b2=c2,
    ∵n为正整数,
    ∴a、b、c是一组勾股数;
    (2)解:∵n=5
    ∴a= (m2﹣52),b=5m,c= (m2+25),
    ∵直角三角形的一边长为37,
    ∴分三种情况讨论,
    ①当a=37时, (m2﹣52)=37,
    解得m=±3 (不合题意,舍去)
    ②当y=37时,5m=37,
    解得m= (不合题意舍去);
    ③当z=37时,37= (m2+n2),
    解得m=±7,
    ∵m>n>0,m、n是互质的奇数,
    ∴m=7,
    把m=7代入①②得,x=12,y=1.
    综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【点睛】
    此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键
    23、(1)y=﹣x+4;(2)1<x<1;(1)2.
    【解析】
    (1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
    (2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
    (1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
    【详解】
    (1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
    m=1,n=1,
    ∴A(1,1)、B(1,1),
    把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
    ,解得,
    ∴直线AB的解析式为y=-x+4;
    (2)观察函数图象,发现:
    当1<x<1时,正比例函数图象在反比例函数图象的上方,
    ∴当y1>y2时,x的取值范围是1<x<1.
    (1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
    过C作y轴的平行线,过B作x轴的平行线,交于点D,则

    Rt△BCD中,BC=,
    ∴PA+PB的最小值为2.
    【点睛】
    本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
    24、见解析
    【解析】
    试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.
    试题解析:∵△ABC是等边三角形,
    ∴AC=BC,∠B=∠ACB=60°,
    ∵线段CD绕点C顺时针旋转60°得到CE,
    ∴CD=CE,∠DCE=60°,
    ∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,
    ∴∠BCD=∠ACE,
    在△BCD与△ACE中,
    ,
    ∴△BCD≌△ACE,
    ∴∠EAC=∠B=60°,
    ∴∠EAC=∠ACB,
    ∴AE∥BC.

    相关试卷

    山东省日照实验中学2022年中考猜题数学试卷含解析: 这是一份山东省日照实验中学2022年中考猜题数学试卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    山东省日照市重点名校2021-2022学年中考猜题数学试卷含解析: 这是一份山东省日照市重点名校2021-2022学年中考猜题数学试卷含解析,共19页。试卷主要包含了当函数y=等内容,欢迎下载使用。

    三门峡实验中学2022年中考猜题数学试卷含解析: 这是一份三门峡实验中学2022年中考猜题数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,-2的绝对值是,﹣3的绝对值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map