|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年莱芜市重点中学中考押题数学预测卷含解析
    立即下载
    加入资料篮
    2022年莱芜市重点中学中考押题数学预测卷含解析01
    2022年莱芜市重点中学中考押题数学预测卷含解析02
    2022年莱芜市重点中学中考押题数学预测卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年莱芜市重点中学中考押题数学预测卷含解析

    展开
    这是一份2022年莱芜市重点中学中考押题数学预测卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列图形中,不是中心对称图形的是(  )
    A.平行四边形 B.圆 C.等边三角形 D.正六边形
    2.若x是2的相反数,|y|=3,则的值是(  )
    A.﹣2 B.4 C.2或﹣4 D.﹣2或4
    3.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )
    A.2.8×105 B.2.8×106 C.28×105 D.0.28×107
    4.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为(  )
    A.5cm B.5cm或3cm C.7cm或3cm D.7cm
    5.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为(  )

    A.25° B.30° C.35° D.40°
    6.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:

    甲:①连接OP,作OP的垂直平分线l,交OP于点A;
    ②以点A为圆心、OA为半径画弧、交⊙O于点M;
    ③作直线PM,则直线PM即为所求(如图1).
    乙:①让直角三角板的一条直角边始终经过点P;
    ②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
    ③作直线PM,则直线PM即为所求(如图2).
    对于两人的作业,下列说法正确的是( )
    A.甲乙都对 B.甲乙都不对
    C.甲对,乙不对 D.甲不对,已对
    7.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是(  )

    A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0
    8.如图是某几何体的三视图及相关数据,则该几何体的全面积是(  )

    A.15π B.24π C.20π D.10π
    9.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为(  )

    A. B. C. D.
    10.方程有两个实数根,则k的取值范围是( ).
    A.k≥1 B.k≤1 C.k>1 D.k<1
    二、填空题(共7小题,每小题3分,满分21分)
    11.分式方程+=1的解为________.
    12.已知是方程组的解,则3a﹣b的算术平方根是_____.
    13.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.

    14.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是______.

    15.点(1,–2)关于坐标原点 O 的对称点坐标是_____.
    16.计算:()•=__.
    17.若关于x的方程=0有增根,则m的值是______.
    三、解答题(共7小题,满分69分)
    18.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.

    19.(5分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.

    20.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.

    21.(10分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.

    22.(10分)(1)计算:sin45°
    (2)解不等式组:
    23.(12分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.

    请结合统计图,回答下列问题:
    (1)本次调查学生共    人,a=   ,并将条形图补充完整;
    (2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
    (3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
    24.(14分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据中心对称图形的定义依次判断各项即可解答.
    【详解】
    选项A、平行四边形是中心对称图形;
    选项B、圆是中心对称图形;
    选项C、等边三角形不是中心对称图形;
    选项D、正六边形是中心对称图形;
    故选C.
    【点睛】
    本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
    2、D
    【解析】
    直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
    【详解】
    解:∵x是1的相反数,|y|=3,
    ∴x=-1,y=±3,
    ∴y-x=4或-1.
    故选D.
    【点睛】
    此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
    3、B
    【解析】
    分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    详解:280万这个数用科学记数法可以表示为
    故选B.
    点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    4、B
    【解析】
    (1)如图1,当点C在点A和点B之间时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB-BN=3cm;
    (2)如图2,当点C在点B的右侧时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB+BN=5cm.
    综上所述,线段MN的长度为5cm或3cm.
    故选B.

    点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.
    5、B
    【解析】
    如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.
    【详解】
    如图,连接OA,OB,OC,OE.

    ∵∠EBC+∠EDC=180°,∠EDC=130°,
    ∴∠EBC=50°,
    ∴∠EOC=2∠EBC=100°,
    ∵AB=BC=CE,
    ∴弧AB=弧BC=弧CE,
    ∴∠AOB=∠BOC=∠EOC=100°,
    ∴∠AOE=360°﹣3×100°=60°,
    ∴∠ABE=∠AOE=30°.
    故选:B.
    【点睛】
    本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    6、A
    【解析】
    (1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.
    【详解】
    证明:(1)如图1,连接OM,OA.
    ∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.
    ∵以点A为圆心、OA为半径画弧、交⊙O于点M;
    ∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;
    (1)如图1.
    ∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.
    故两位同学的作法都正确.
    故选A.

    【点睛】
    本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.
    7、C
    【解析】
    首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.
    【详解】
    ∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,
    ∴1=﹣,
    解得:x=﹣3,
    ∴P(﹣3,1),
    故不等式ax2+bx+>1的解集是:x<﹣3或x>1.
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.
    8、B
    【解析】
    解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
    点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.
    9、D
    【解析】
    连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
    【详解】
    连接CD,如图:

    ,CD=,AC=
    ∵,∴∠ADC=90°,∴tan∠BAC==.
    故选D.
    【点睛】
    本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
    10、D
    【解析】
    当k=1时,原方程不成立,故k≠1,
    当k≠1时,方程为一元二次方程.
    ∵此方程有两个实数根,
    ∴,解得:k≤1.
    综上k的取值范围是k<1.故选D.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据解分式方程的步骤,即可解答.
    【详解】
    方程两边都乘以,得:,
    解得:,
    检验:当时,,
    所以分式方程的解为,
    故答案为.
    【点睛】
    考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根.
    12、2.
    【解析】
    灵活运用方程的性质求解即可。
    【详解】
    解:由是方程组的解,可得满足方程组,
    由①+②的,3x-y=8,即可3a-b=8,
    故3a﹣b的算术平方根是,
    故答案:
    【点睛】
    本题主要考查二元一次方程组的性质及其解法。
    13、65°
    【解析】
    因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.
    14、1﹣1
    【解析】
    如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=1,即可求出B′D.
    【详解】
    如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,
    根据折叠的性质,△EBF≌△EB′F,
    ∴EB′⊥B′F,
    ∴EB′=EB,
    ∵E是AB边的中点,AB=4,
    ∴AE=EB′=1,
    ∵AD=6,
    ∴DE=,
    ∴B′D=1﹣1.

    【点睛】
    本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D的值最小是解题的关键.
    15、(-1,2)
    【解析】
    根据两个点关于原点对称时,它们的坐标符号相反可得答案.
    【详解】
    A(1,-2)关于原点O的对称点的坐标是(-1,2),
    故答案为:(-1,2).
    【点睛】
    此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
    16、1
    【解析】
    试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案.原式=.
    17、2
    【解析】
    去分母得,m-1-x=0.
    ∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.

    三、解答题(共7小题,满分69分)
    18、(1)10;(2).
    【解析】
    (1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;
    (2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变
    【详解】
    (1)如图1,∵四边形ABCD是矩形,

    ∴∠C=∠D=90°,
    ∴∠1+∠3=90°,
    ∵由折叠可得∠APO=∠B=90°,
    ∴∠1+∠2=90°,∴∠2=∠3,
    又∵∠D=∠C,
    ∴△OCP∽△PDA;
    ∵△OCP与△PDA的面积比为1:4,
    ∴ ,∴ CP=AD=4
    设OP=x,则CO=8﹣x,
    在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,
    解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;
    (2)作MQ∥AN,交PB于点Q,如图2,

    ∵AP=AB,MQ∥AN,
    ∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,
    ∴BN=QM.
    ∵MP=MQ,ME⊥PQ,
    ∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,
    ∴△MFQ≌△NFB.
    ∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,
    由(1)中的结论可得:PC=4,BC=8,∠C=90°,
    ∴PB=,∴EF=PB=2,
    ∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形
    19、 (1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
    【解析】
    (1)直接利用位似图形的性质得出对应点位置进而得出答案;
    (2)利用(1)中所画图形进而得出答案.
    【详解】
    (1)如图所示:△OA1B1,△OA2B2,即为所求;

    (2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
    【点睛】
    此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.
    20、(1)详见解析;(2)80°.
    【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【解析】
    (1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
    (2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
    【详解】
    证明:(1)∵AC=AD,
    ∴∠ACD=∠ADC,
    又∵∠BCD=∠EDC=90°,
    ∴∠ACB=∠ADE,
    在△ABC和△AED中,

    ∴△ABC≌△AED(SAS);
    解:(2)当∠B=140°时,∠E=140°,
    又∵∠BCD=∠EDC=90°,
    ∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
    【点睛】
    考点:全等三角形的判定与性质.
    21、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    22、(1);(2)﹣2<x≤1.
    【解析】
    (1)根据绝对值、特殊角的三角函数值可以解答本题;
    (2)根据解一元一次不等式组的方法可以解答本题.
    【详解】
    (1)sin45°
    =3-+×-5+×
    =3-+3-5+1
    =7--5;
    (2)(2)
    由不等式①,得
    x>-2,
    由不等式②,得
    x≤1,
    故原不等式组的解集是-2<x≤1.
    【点睛】
    本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
    23、(1)300,10; (2)有800人;(3) .
    【解析】试题分析:
    试题解析:(1)120÷40%=300,
    a%=1﹣40%﹣30%﹣20%=10%,
    ∴a=10,
    10%×300=30,
    图形如下:

    (2)2000×40%=800(人),
    答:估计该校选择“跑步”这种活动的学生约有800人;
    (3)画树状图为:

    共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,
    所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.
    考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.
    24、1.9米
    【解析】
    试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.
    试题解析:∵∠BDC=90°,BC=10,sinB=, ∴CD=BC•sinB=10×0.2=5.9,
    ∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°, ∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,
    ∴在Rt△ACD中,tan∠ACD=, ∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),
    则改建后南屋面边沿增加部分AD的长约为1.9米.
    考点:解直角三角形的应用

    相关试卷

    2022年安康市重点中学中考押题数学预测卷含解析: 这是一份2022年安康市重点中学中考押题数学预测卷含解析,共22页。试卷主要包含了已知,则的值为,下列判断正确的是等内容,欢迎下载使用。

    2022年德宏市重点中学中考押题数学预测卷含解析: 这是一份2022年德宏市重点中学中考押题数学预测卷含解析,共23页。试卷主要包含了下列运算正确的是,计算4×的结果等于,下列命题是真命题的是,cs30°=等内容,欢迎下载使用。

    2021-2022学年临汾市重点中学中考押题数学预测卷含解析: 这是一份2021-2022学年临汾市重点中学中考押题数学预测卷含解析,共16页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map