2022年江苏省南通市港闸区重点名校中考数学考前最后一卷含解析
展开
这是一份2022年江苏省南通市港闸区重点名校中考数学考前最后一卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,估计+1的值在等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,从圆外一点引圆的两条切线,,切点分别为,,如果, ,那么弦AB的长是( )
A. B. C. D.
2.一、单选题
如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
3.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( )
A. B. C. D.
4.在实数,,,中,其中最小的实数是( )
A. B. C. D.
5.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )
A.0.86×104 B.8.6×102 C.8.6×103 D.86×102
6.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
7.在下列函数中,其图象与x轴没有交点的是( )
A.y=2x B.y=﹣3x+1 C.y=x2 D.y=
8.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
9.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cm B.cm C.8cm D.cm
10.将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).
A. B. C. D.
11.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置( )
A.随点C的运动而变化
B.不变
C.在使PA=OA的劣弧上
D.无法确定
12.如图所示的几何体的俯视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为 .
14.若关于的一元二次方程无实数根,则一次函数的图象不经过第_________象限.
15.如果a+b=2,那么代数式(a﹣)÷的值是______.
16.在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.
17.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是 .
18.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
20.(6分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.
21.(6分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点” .乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.
22.(8分)如图1,抛物线y1=ax1﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.
(1)求抛物线y1的解析式;
(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
23.(8分)综合与探究
如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
①当点G与点D重合时,求平移距离m的值;
②用含x的式子表示平移距离m,并求m的最大值;
(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.
24.(10分)如图,△ABC中,CD是边AB上的高,且.
求证:△ACD∽△CBD;求∠ACB的大小.
25.(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中a= ,b= ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
26.(12分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.
27.(12分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:
(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解.
【详解】
解:,PB为的切线,
,
,
为等边三角形,
.
故选C.
【点睛】
本题考查切线长定理,掌握切线长定理是解题的关键.
2、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
3、C
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既不是中心对称图形,也不是轴对称图形,故本选项正确;
D、是中心对称图形,不是轴对称图形,故本选项错误,
故选C.
【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
4、B
【解析】
由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.
【详解】
解:∵0,-2,1,中,-2<0<1<,
∴其中最小的实数为-2;
故选:B.
【点睛】
本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.
5、C
【解析】
科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
【详解】
数据8 600用科学记数法表示为8.6×103
故选C.
【点睛】
用科学记数法表示一个数的方法是
(1)确定a:a是只有一位整数的数;
(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).
6、B
【解析】
分析:直接利用2<<3,进而得出答案.
详解:∵2<<3,
∴3<+1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
7、D
【解析】
依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.
【详解】
A.正比例函数y=2x与x轴交于(0,0),不合题意;
B.一次函数y=-3x+1与x轴交于(,0),不合题意;
C.二次函数y=x2与x轴交于(0,0),不合题意;
D.反比例函数y=与x轴没有交点,符合题意;
故选D.
8、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
9、B
【解析】
试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,
∴留下的扇形的弧长==12π,
根据底面圆的周长等于扇形弧长,
∴圆锥的底面半径r==6cm,
∴圆锥的高为=3cm
故选B.
考点: 圆锥的计算.
10、D
【解析】
根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.
【详解】
如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.
∵直尺的两边互相平行,∴∠2=∠1=148°.
故选D.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
11、B
【解析】
因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
【详解】
解:连接OP,
∵CP是∠OCD的平分线,
∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴点P是线段AB垂直平分线和圆的交点,
∴当C在⊙O上运动时,点P不动.
故选:B.
【点睛】
本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
12、D
【解析】
试题分析:根据俯视图的作法即可得出结论.
从上往下看该几何体的俯视图是D.故选D.
考点:简单几何体的三视图.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.
试题解析:∵圆锥的底面周长为6π,
∴圆锥的底面半径为 6π÷2π="3,"
∵圆锥的侧面积=×侧面展开图的弧长×母线长,
∴母线长=2×12π÷6π="4,"
∴这个圆锥的高是
考点:圆锥的计算.
14、一
【解析】
根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.
【详解】
∵关于x的一元二次方程mx2-2x-1=0无实数根,
∴m≠0且△=(-2)2-4m×(-1)<0,
∴m<-1,
∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.
故答案为一.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.
15、2
【解析】
分析:根据分式的运算法则即可求出答案.
详解:当a+b=2时,
原式=
=
=a+b
=2
故答案为:2
点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
16、
【解析】
设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程.
【详解】
设羊价为x钱,
根据题意可得方程:,
故答案为:.
【点睛】
本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.
17、.
【解析】
试题分析:画树状图得:
∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.
考点:反比例函数图象上点的坐标特征;列表法与树状图法.
18、1
【解析】
先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
【详解】
解:∵BD=CD,
∴,
∴OD⊥BC,
∴BE=CE,
而OA=OB,
∴OE为△ABC的中位线,
∴,
∴DE=OD-OE=5-3=1.
故答案为1.
【点睛】
此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.
【解析】
(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;
(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.
【详解】
(1)设商场第一次购进x套运动服,由题意得
解这个方程,得
经检验,是所列方程的根
.
答:商场两次共购进这种运动服600套;
(2)设每套运动服的售价为y元,由题意得
,
解这个不等式,得
答:每套运动服的售价至少是200元.
【点睛】
此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.
20、 (1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
【解析】
(1)根据题意只需要证明a2+b2=c2,即可解答
(2)根据题意将n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再将直角三角形的一边长为37,分别分三种情况代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
【详解】
(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
∴a2+b2=c2,
∵n为正整数,
∴a、b、c是一组勾股数;
(2)解:∵n=5
∴a= (m2﹣52),b=5m,c= (m2+25),
∵直角三角形的一边长为37,
∴分三种情况讨论,
①当a=37时, (m2﹣52)=37,
解得m=±3 (不合题意,舍去)
②当y=37时,5m=37,
解得m= (不合题意舍去);
③当z=37时,37= (m2+n2),
解得m=±7,
∵m>n>0,m、n是互质的奇数,
∴m=7,
把m=7代入①②得,x=12,y=1.
综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
【点睛】
此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键
21、①结论一正确,理由见解析;②结论二正确,S四QEFP= S
【解析】
试题分析:
(1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;
(2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP= S△AEF- S△AQP=S,从而说明乙的结论②正确;
试题解析:
甲和乙的结论都成立,理由如下:
(1)∵在平行四边形ABCD中,AD∥BC,
∴△BEQ∽△DAQ,
又∵点P、Q是线段BD的三等分点,
∴BE:AD=BQ:DQ=1:2,
∵AD=BC,
∴BE:BC=1:2,
∴点E是BC的中点,即结论①正确;
(2)和(1)同理可得点F是CD的中点,
∴EF∥BD,EF=BD,
∴△CEF∽△CBD,
∴S△CEF=S△CBD=S平行四边形ABCD=S,
∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,
∴S△AEF=S四边形AECF-S△CEF=S,
∵EF∥BD,
∴△AQP∽△AEF,
又∵EF=BD,PQ=BD,
∴QP:EF=2:3,
∴S△AQP=S△AEF=,
∴S四边形QEFP= S△AEF- S△AQP=S-=S,即结论②正确.
综上所述,甲、乙两位同学的结论都正确.
22、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.
【解析】
(1)应用待定系数法求解析式;
(1)设出点T坐标,表示△TAC三边,进行分类讨论;
(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.
【详解】
解:(1)由已知,c=,
将B(1,0)代入,得:a﹣=0,
解得a=﹣,
抛物线解析式为y1=x1- x+,
∵抛物线y1平移后得到y1,且顶点为B(1,0),
∴y1=﹣(x﹣1)1,
即y1=-x1+ x-;
(1)存在,
如图1:
抛物线y1的对称轴l为x=1,设T(1,t),
已知A(﹣3,0),C(0,),
过点T作TE⊥y轴于E,则
TC1=TE1+CE1=11+()1=t1﹣t+,
TA1=TB1+AB1=(1+3)1+t1=t1+16,
AC1=,
当TC=AC时,t1﹣t+=,
解得:t1=,t1=;
当TA=AC时,t1+16=,无解;
当TA=TC时,t1﹣t+=t1+16,
解得t3=﹣;
当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;
(3)如图1:
设P(m,),则Q(m,),
∵Q、R关于x=1对称
∴R(1﹣m,),
①当点P在直线l左侧时,
PQ=1﹣m,QR=1﹣1m,
∵△PQR与△AMG全等,
∴当PQ=GM且QR=AM时,m=0,
∴P(0,),即点P、C重合,
∴R(1,﹣),
由此求直线PR解析式为y=﹣x+,
当PQ=AM且QR=GM时,无解;
②当点P在直线l右侧时,
同理:PQ=m﹣1,QR=1m﹣1,
则P(1,﹣),R(0,﹣),
PQ解析式为:y=﹣;
∴PR解析式为:y=﹣x+或y=﹣.
【点睛】
本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.
23、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
【解析】
(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
【详解】
解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
解得:,
∴抛物线的表达式为y=﹣x3+x+2,
把E(﹣4,y)代入得:y=﹣6,
∴点E的坐标为(﹣4,﹣6).
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
解得:,
∴直线BD的表达式为y=x﹣2.
把x=0代入y=x﹣2得:y=﹣2,
∴D(0,﹣2).
当点G与点D重合时,G的坐标为(0,﹣2).
∵GF∥x轴,
∴F的纵坐标为﹣2.
将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
解得:x=+3或x=﹣+3.
∵﹣4<x<4,
∴点F的坐标为(﹣+3,﹣2).
∴m=FG=﹣3.
②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
∵﹣<0,
∴m有最大值,
当x=0时,m的最大值为4.
(2)当点F在x轴的左侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
解得:x=﹣3或x=4(舍去),
∴点F的坐标为(﹣3,0).
当点F在x轴的右侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
解得:x=﹣3或x=﹣﹣3(舍去),
∴点F的坐标为(﹣3,).
综上所述,点F的坐标为(﹣3,0)或(﹣3,).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
24、(1)证明见试题解析;(2)90°.
【解析】
试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;
(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.
试题解析:(1)∵CD是边AB上的高,
∴∠ADC=∠CDB=90°,
∵.
∴△ACD∽△CBD;
(2)∵△ACD∽△CBD,
∴∠A=∠BCD,
在△ACD中,∠ADC=90°,
∴∠A+∠ACD=90°,
∴∠BCD+∠ACD=90°,
即∠ACB=90°.
考点:相似三角形的判定与性质.
25、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
26、答案见解析
【解析】
试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
试题解析:连接BD,
∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
∴MN∥BD,MN= BD,
∵ ,
∴ .
27、(1)60人;(2)144°,补全图形见解析;(3)15万人.
【解析】
(1)用B景点人数除以其所占百分比可得;
(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;
(3)用总人数乘以样本中D景点人数所占比例
【详解】
(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;
(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,
补全图形如下:
(3)估计选择去景点D旅游的人数为90×=15(万人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
相关试卷
这是一份2022届濉溪县重点达标名校中考数学考前最后一卷含解析,共18页。试卷主要包含了济南市某天的气温,下列运算正确的是等内容,欢迎下载使用。
这是一份2022届山西省重点名校中考数学考前最后一卷含解析,共24页。
这是一份2022届山东青岛重点名校中考数学考前最后一卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解为,已知等内容,欢迎下载使用。