|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖南省祁阳县中考三模数学试题含解析
    立即下载
    加入资料篮
    2022年湖南省祁阳县中考三模数学试题含解析01
    2022年湖南省祁阳县中考三模数学试题含解析02
    2022年湖南省祁阳县中考三模数学试题含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省祁阳县中考三模数学试题含解析

    展开
    这是一份2022年湖南省祁阳县中考三模数学试题含解析,共28页。试卷主要包含了不等式组的解集是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.二次函数的图像如图所示,下列结论正确是( )

    A. B. C. D.有两个不相等的实数根
    2.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2
    3.下列等式正确的是(  )
    A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1
    C.a3+a3=a6 D.(ab)2=a
    4.如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是(  )

    A.1 B. C.2 D.
    5.不等式组的解集是(  )
    A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
    6.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    7.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )

    A.两车同时到达乙地
    B.轿车在行驶过程中进行了提速
    C.货车出发3小时后,轿车追上货车
    D.两车在前80千米的速度相等
    8.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(  )

    A. B. C. D.
    9.在1、﹣1、3、﹣2这四个数中,最大的数是(  )
    A.1 B.﹣1 C.3 D.﹣2
    10.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是(  )
    A. B. C. D.
    11.不等式组的解集在数轴上表示正确的是(  )
    A. B. C. D.
    12.一元二次方程x2﹣5x﹣6=0的根是(  )
    A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知梯形ABCD,AD∥BC,BC=2AD,如果,,那么=_____(用、 表示).
    14.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 __________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)

    15.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.

    16.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.
    17.若正六边形的边长为2,则此正六边形的边心距为______.
    18.二次函数的图象如图,若一元二次方程有实数根,则 的最大值为___

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
    (1)求证:BC平分∠DBA;
    (2)若,求的值.

    20.(6分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.
    (1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
    (2)求△ABC的面积(用含a的代数式表示);
    (3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

    21.(6分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.
    (1)直接写出点A的坐标;
    (2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.
    ①当∠BAC=90°时.求抛物线G2的表达式;
    ②若60°<∠BAC<120°,直接写出m的取值范围.
    22.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△ABC; 请画出△ABC关于原点对称的△ABC; 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.

    23.(8分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
    (1)设a=2,点B(4,2)在函数y1、y2的图象上.
    ①分别求函数y1、y2的表达式;
    ②直接写出使y1>y2>0成立的x的范围;
    (2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
    (3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.

    24.(10分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积

    25.(10分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
    (1)求此抛物线的解析式;
    (2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
    (3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.

    26.(12分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.
    (1)求抛物线的表达式;
    (2)求∠CAB的正切值;
    (3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.

    27.(12分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
    (1)求证:PC∥BD;
    (2)若⊙O的半径为2,∠ABP=60°,求CP的长;
    (3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得 3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.
    【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
    ∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;
    当x=-1时, y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
    ∵抛物线的顶点为(1,3),
    ∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,
    故选C.
    【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.
    2、D
    【解析】
    试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;
    故选D.
    考点:反比例函数的性质.
    3、B
    【解析】
    (1)根据完全平方公式进行解答;
    (2)根据合并同类项进行解答;
    (3)根据合并同类项进行解答;
    (4)根据幂的乘方进行解答.
    【详解】
    解:A、(a+b)2=a2+2ab+b2,故此选项错误;
    B、3n+3n+3n=3n+1,正确;
    C、a3+a3=2a3,故此选项错误;
    D、(ab)2=a2b,故此选项错误;
    故选B.
    【点睛】
    本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.
    4、B
    【解析】
    连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.
    【详解】
    解:连接AG、GE、EC,

    则四边形ACEG为正方形,故=.
    故选:B.
    【点睛】
    本题考查了正多边形的性质,正确作出辅助线是关键.
    5、D
    【解析】
    由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
    6、B
    【解析】
    通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.
    【详解】
    由图象可知,抛物线开口向下,则,,
    抛物线的顶点坐标是,
    抛物线对称轴为直线,

    ,则①错误,②正确;
    方程的解,可以看做直线与抛物线的交点的横坐标,
    由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,
    则方程有两个相等的实数根,③正确;
    由抛物线对称性,抛物线与轴的另一个交点是,则④错误;
    不等式可以化为,
    抛物线顶点为,
    当时,,
    故⑤正确.
    故选:.
    【点睛】
    本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.
    7、B
    【解析】
    ①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.
    【详解】
    由题意和图可得,
    轿车先到达乙地,故选项A错误,
    轿车在行驶过程中进行了提速,故选项B正确,
    货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,
    设货车对应的函数解析式为y=kx,
    5k=300,得k=60,
    即货车对应的函数解析式为y=60x,
    设CD段轿车对应的函数解析式为y=ax+b,
    ,得,
    即CD段轿车对应的函数解析式为y=110x-195,
    令60x=110x-195,得x=3.9,
    即货车出发3.9小时后,轿车追上货车,故选项C错误,
    故选:B.
    【点睛】
    此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式
    8、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    9、C
    【解析】
    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
    【详解】
    解:根据有理数比较大小的方法,可得
    -2<-1<1<1,
    ∴在1、-1、1、-2这四个数中,最大的数是1.
    故选C.
    【点睛】
    此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
    10、D
    【解析】
    试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.
    11、A
    【解析】
    分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.
    详解:
    由①得,x≤1,
    由②得,x>-1,
    故此不等式组的解集为:-1 在数轴上表示为:

    故选A.
    点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    12、D
    【解析】
    本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.
    【详解】
    x2-5x-6=1
    (x-6)(x+1)=1
    x1=-1,x2=6
    故选D.
    【点睛】
    本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据向量的三角形法则表示出,再根据BC、AD的关系解答.
    【详解】
    如图,

    ∵,,
    ∴=-=-,
    ∵AD∥BC,BC=2AD,
    ∴==(-)=-.
    故答案为-.
    【点睛】
    本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.
    14、BE=DF
    【解析】
    可以添加的条件有BE=DF等;证明:
    ∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;
    又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
    ∴∠AEF=∠CFE.∴AE∥CF;
    ∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.
    15、1.
    【解析】
    根据立体图形画出它的主视图,再求出面积即可.
    【详解】
    主视图如图所示,

    ∵主视图是由1个棱长均为1的正方体组成的几何体,
    ∴主视图的面积为1×12=1.
    故答案为:1.
    【点睛】
    本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.
    16、1
    【解析】
    试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,
    相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为1.
    17、.
    【解析】
    连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
    【详解】
    连接OA、OB、OC、OD、OE、OF,

    ∵正六边形ABCDEF,
    ∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
    ∴△AOB是等边三角形,
    ∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
    在△OAM中,由勾股定理得:OM=.
    18、3
    【解析】
    试题解析::∵抛物线的开口向上,顶点纵坐标为-3,
    ∴a>1.
    -=-3,即b2=12a,
    ∵一元二次方程ax2+bx+m=1有实数根,
    ∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,
    ∴m的最大值为3,

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)证明见解析;(2)
    【解析】
    分析:
    (1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
    (2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
    详解:
    (1)证明:连结OC,
    ∵DE与⊙O相切于点C,
    ∴OC⊥DE.
    ∵BD⊥DE,
    ∴OC∥BD. .
    ∴∠1=∠2,
    ∵OB=OC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    即BC平分∠DBA. .

    (2)∵OC∥BD,
    ∴△EBD∽△EOC,△DBM∽△OCM,.
    ∴,
    ∴,
    ∵,设EA=2k,AO=3k,
    ∴OC=OA=OB=3k.
    ∴.
    点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
    20、(1)(m,2m﹣2);(2)S△ABC =﹣;(3)m的值为或10+2.
    【解析】
    分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;
    (3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.
    详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,
    ∴抛物线的顶点坐标为(m,2m﹣2),
    故答案为(m,2m﹣2);
    (2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,

    ∵AB∥x轴,且AB=1,
    ∴点B的坐标为(m+2,1a+2m﹣2),
    ∵∠ABC=132°,
    ∴设BD=t,则CD=t,
    ∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),
    ∵点C在抛物线y=a(x﹣m)2+2m﹣2上,
    ∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,
    整理,得:at2+(1a+1)t=0,
    解得:t1=0(舍去),t2=﹣,
    ∴S△ABC=AB•CD=﹣;
    (3)∵△ABC的面积为2,
    ∴﹣=2,
    解得:a=﹣,
    ∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.
    分三种情况考虑:
    ①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣11m+39=0,
    解得:m1=7﹣(舍去),m2=7+(舍去);
    ②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;
    ③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
    整理,得:m2﹣20m+60=0,
    解得:m3=10﹣2(舍去),m1=10+2.
    综上所述:m的值为或10+2.
    点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.
    21、(1)(,2);(2)①y=(x-)2+2;②
    【解析】
    (1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;
    (2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;
    ②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.
    【详解】
    (1)∵将抛物线G1:y=mx2+2(m≠0)向右平移个单位长度后得到抛物线G2,
    ∴抛物线G2:y=m(x-)2+2,
    ∵点A是抛物线G2的顶点.
    ∴点A的坐标为(,2).
    (2)①设抛物线对称轴与直线l交于点D,如图1所示.
    ∵点A是抛物线顶点,
    ∴AB=AC.
    ∵∠BAC=90°,
    ∴△ABC为等腰直角三角形,
    ∴CD=AD=,
    ∴点C的坐标为(2,).
    ∵点C在抛物线G2上,
    ∴=m(2-)2+2,
    解得:.
    ②依照题意画出图形,如图2所示.
    同理:当∠BAC=60°时,点C的坐标为(+1,);
    当∠BAC=120°时,点C的坐标为(+3,).
    ∵60°<∠BAC<120°,
    ∴点(+1,)在抛物线G2下方,点(+3,)在抛物线G2上方,
    ∴,
    解得:.


    【点睛】
    此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.
    22、(1)图形见解析;
    (2)图形见解析;
    (3)图形见解析,点P的坐标为:(2,0)
    【解析】
    (1)按题目的要求平移就可以了
    关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
    (3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
    【详解】

    (1)△A1B1C1如图所示;
    (2)△A2B2C2如图所示;
    (3)△PAB如图所示,点P的坐标为:(2,0)
    【点睛】
    1、图形的平移;2、中心对称;3、轴对称的应用
    23、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)证明见解析.
    【解析】
    分析:(1)由已知代入点坐标即可;
    (2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;
    (3)设出点A、A′坐标,依次表示AD、AF及点P坐标.
    详解:(1)①由已知,点B(4,2)在y1═(x>0)的图象上
    ∴k=8
    ∴y1=
    ∵a=2
    ∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)
    把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,

    解得,
    ∴y2=x﹣2;
    ②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方,
    ∴由图象得:2<x<4;
    (2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO,

    ∵O为AA′中点,
    S△AOB=S△AOA′=8
    ∵点A、B在双曲线上
    ∴S△AOC=S△BOD
    ∴S△AOB=S四边形ACDB=8
    由已知点A、B坐标都表示为(a,)(3a,)
    ∴,
    解得k=6;
    (3)由已知A(a,),则A′为(﹣a,﹣).
    把A′代入到y=,得:﹣,
    ∴n=,
    ∴A′B解析式为y=﹣.
    当x=a时,点D纵坐标为,
    ∴AD=
    ∵AD=AF,
    ∴点F和点P横坐标为,
    ∴点P纵坐标为.
    ∴点P在y1═(x>0)的图象上.
    点睛:本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.
    24、(1),N(3,6);(2)y=-x+2,S△OMN=3.
    【解析】
    (1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
    (2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
    【详解】
    解:(1)∵点M是AB边的中点,∴M(6,3).
    ∵反比例函数y=经过点M,∴3=.∴k=1.
    ∴反比例函数的解析式为y=.
    当y=6时,x=3,∴N(3,6).
    (2)由题意,知M(6,2),N(2,6).
    设直线MN的解析式为y=ax+b,则

    解得,
    ∴直线MN的解析式为y=-x+2.
    ∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
    【点睛】
    本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
    25、(1);(2)-2或-1;(3)-1≤n<1或1 【解析】
    (1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
    (2)根据题意画出图形,分三种情况进行讨论;
    (3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
    【详解】
    解:(1)依题意,得:

    解得:
    ∴此抛物线的解析式 ;
    (2)设直线AB的解析式为y=kx+b,依题意得:

    解得:
    ∴直线AB的解析式为y=-x.
    ∵点P的横坐标为m,且在抛物线上,
    ∴点P的坐标为(m, )
    ∵轴,且点Q有线段AB上,
    ∴点Q的坐标为(m,-m)
    ① 当PQ=AP时,如图,∵∠APQ=90°,轴,

    解得,m=-2或m=1(舍去)

    ② 当AQ=AP时,如图,过点A作AC⊥PQ于C,

    ∵为等腰直角三角形,
    ∴2AC=PQ

    即m=1(舍去)或m=-1.
    综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
    (3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
    ∴点E的坐标为(n,n-2)
    当点E恰好在抛物线上时,解得,n=-1.
    ∴此时n的取值范围-1≤n<1.

    ②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
    当点E在抛物线上时,
    解得,n=3或n=1.
    ∵n>1.
    ∴n=3.
    ∴此时n的取值范围1 综上所述,n的取值范围为-1≤n<1或1
    【点睛】
    本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
    26、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)
    【解析】
    (4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;
    (4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
    (3) 连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.
    【详解】
    解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,
    ∵a<0,抛物线开口向下,又与x轴有交点,
    ∴抛物线的顶点C在x轴的上方,
    由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).
    可设此抛物线的表达式是y=a(x+4)4+4,
    由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.
    因此,抛物线的表达式是y=﹣x4﹣4x+3.
    (4)如图4,

    点B的坐标是(0,3).连接BC.
    ∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,
    得AB4+BC4=AC4.
    ∴△ABC为直角三角形,∠ABC=90°,
    所以tan∠CAB=.
    即∠CAB的正切值等于.
    (3)如图4,连接BC,
    ∵OA=OB=3,∠AOB=90°,
    ∴△AOB是等腰直角三角形,
    ∴∠BAP=∠ABO=45°,
    ∵∠CAO=∠ABP,
    ∴∠CAB=∠OBP,
    ∵∠ABC=∠BOP=90°,
    ∴△ACB∽△BPO,
    ∴,
    ∴,OP=4,
    ∴点P的坐标是(4,0).
    【点睛】
    本题主要考查二次函数的图像与性质,综合性大.
    27、(1)证明见解析;(2)+;(3)的值不变,.
    【解析】
    (1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
    (2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
    (3)证明△CBP∽△ABD,根据相似三角形的性质解答.
    【详解】
    (1)证明:∵△ABC是等腰直角三角形,且AC=BC,
    ∴∠ABC=45°,∠ACB=90°,
    ∴∠APC=∠ABC=45°,
    ∴AB为⊙O的直径,
    ∴∠APB=90°,
    ∵PD=PB,
    ∴∠PBD=∠D=45°,
    ∴∠APC=∠D=45°,
    ∴PC∥BD;
    (2)作BH⊥CP,垂足为H,

    ∵⊙O的半径为2,∠ABP=60°,
    ∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
    在Rt△BCH中,CH=BC•cos∠BCH=,
    BH=BC•sin∠BCH=,
    在Rt△BHP中,PH=BH=,
    ∴CP=CH+PH=+;
    (3)的值不变,
    ∵∠BCP=∠BAP,∠CPB=∠D,
    ∴△CBP∽△ABD,
    ∴=,
    ∴=,即=.
    【点睛】
    本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.

    相关试卷

    2023年湖南省永州市祁阳县浙江省市中考数学二模试卷(含解析): 这是一份2023年湖南省永州市祁阳县浙江省市中考数学二模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省永州市中考三模数学试题(含解析): 这是一份2023年湖南省永州市中考三模数学试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    湖南省祁阳县重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份湖南省祁阳县重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了下列计算正确的是,小手盖住的点的坐标可能为,下列四个式子中,正确的是,若a+b=3,,则ab等于,计算的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map