|试卷下载
搜索
    上传资料 赚现金
    2022年广东省揭阳市产业园区重点名校中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022年广东省揭阳市产业园区重点名校中考冲刺卷数学试题含解析01
    2022年广东省揭阳市产业园区重点名校中考冲刺卷数学试题含解析02
    2022年广东省揭阳市产业园区重点名校中考冲刺卷数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省揭阳市产业园区重点名校中考冲刺卷数学试题含解析

    展开
    这是一份2022年广东省揭阳市产业园区重点名校中考冲刺卷数学试题含解析,共21页。试卷主要包含了计算2a2+3a2的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为(  )
    A. B.2 C.2 D.4
    2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为(  )
    A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×108
    3.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    4.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(   )
    A.         B.
    C.      D.
    5.若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )
    A.1,2,3 B.1,2 C.1,3 D.2,3
    6.下列图形中为正方体的平面展开图的是(  )
    A. B.
    C. D.
    7.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是(    ).
    A. B.- C.- D.
    8.下列几何体中,主视图和左视图都是矩形的是(  )
    A. B. C. D.
    9.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为(  )

    A. B. C. D.
    10.计算2a2+3a2的结果是( )
    A.5a4 B.6a2 C.6a4 D.5a2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,为的直径,与相切于点,弦.若,则______.

    12.肥皂泡的泡壁厚度大约是,用科学记数法表示为 _______.
    13.点A(-2,1)在第_______象限.
    14.若关于x的方程=0有增根,则m的值是______.
    15.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.

    16.计算:﹣|﹣2|+()﹣1=_____.
    17.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.

    19.(5分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.
    (I)AC的长等于_____.
    (II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).

    20.(8分)综合与探究
    如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
    (1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
    (2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
    ①当点G与点D重合时,求平移距离m的值;
    ②用含x的式子表示平移距离m,并求m的最大值;
    (3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.

    21.(10分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
    (1)求抛物线的解析式;
    (2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
    (3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

    22.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
    求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当>>0时,x的取值范围.
    23.(12分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
    (1)求 x 的范围;
    (2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
    24.(14分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
    【详解】
    解:∵圆内接正六边形的边长是1,
    ∴圆的半径为1.
    那么直径为2.
    圆的内接正方形的对角线长为圆的直径,等于2.
    ∴圆的内接正方形的边长是1.
    故选B.
    【点睛】
    本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
    2、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:5300万=53000000=.
    故选C.
    【点睛】
    在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
    3、B
    【解析】
    首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
    【详解】
    设学校购买文学类图书平均每本书的价格是x元,可得:
    故选B.
    【点睛】
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
    4、D
    【解析】
    分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
    详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
    B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
    C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
    D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
    故选D.
    点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
    5、C
    【解析】
    试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,
    已知关于x的分式方的解为正数,得m=1,m=3,故选C.
    考点:分式方程的解.
    6、C
    【解析】
    利用正方体及其表面展开图的特点依次判断解题.
    【详解】
    由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.
    【点睛】
    本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.
    7、C
    【解析】
    分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.
    详解:∵α、β是一元二次方程3x2+2x-9=0的两根,
    ∴α+β=-,αβ=-3,
    ∴===.
    故选C.
    点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.
    8、C
    【解析】
    主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
    【详解】
    A. 主视图为圆形,左视图为圆,故选项错误;
    B. 主视图为三角形,左视图为三角形,故选项错误;
    C. 主视图为矩形,左视图为矩形,故选项正确;
    D. 主视图为矩形,左视图为圆形,故选项错误.
    故答案选:C.
    【点睛】
    本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
    9、C
    【解析】
    由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
    【详解】
    第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
    10、D
    【解析】
    直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
    【详解】
    2a2+3a2=5a2.
    故选D.
    【点睛】
    本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
    【详解】
    ∵与相切于点,
    ∴AC⊥AB,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,
    ∴.
    故答案为1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    12、7×10-1.
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.0007=7×10-1.
    故答案为:7×10-1.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    13、二
    【解析】
    根据点在第二象限的坐标特点解答即可.
    【详解】
    ∵点A的横坐标-2<0,纵坐标1>0,
    ∴点A在第二象限内.
    故答案为:二.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    14、2
    【解析】
    去分母得,m-1-x=0.
    ∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.
    15、
    【解析】
    试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.
    16、﹣1
    【解析】
    根据立方根、绝对值及负整数指数幂等知识点解答即可.
    【详解】
    原式= -2 -2+3= -1
    【点睛】
    本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
    17、1
    【解析】
    【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.
    【详解】如图,过点A作AD⊥x轴,垂足为D,
    ∵tan∠AOC==,∴设点A的坐标为(1a,a),
    ∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
    ∴a=1a﹣2,得a=1,
    ∴1=,得k=1,
    故答案为:1.

    【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

    三、解答题(共7小题,满分69分)
    18、证明见解析.
    【解析】
    由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
    证明:∵BE∥DF,∴∠ABE=∠D,
    在△ABE和△FDC中,
    ∠ABE=∠D,AB=FD,∠A=∠F
    ∴△ABE≌△FDC(ASA),
    ∴AE=FC.
    “点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
    19、 作a∥b∥c∥d,可得交点P与P′
    【解析】
    (1)根据勾股定理计算即可;
    (2)利用平行线等分线段定理即可解决问题.
    【详解】
    (I)AC==,
    故答案为:;
    (II)如图直线l1,直线l2即为所求;

    理由:∵a∥b∥c∥d,且a与b,b与c,c与d之间的距离相等,
    ∴CP=PP′=P′A,
    ∴S△BCP=S△ABP′=S△ABC.
    故答案为作a∥b∥c∥d,可得交点P与P′.
    【点睛】
    本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    20、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
    【解析】
    (3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
    ②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
    (2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
    【详解】
    解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
    解得:,
    ∴抛物线的表达式为y=﹣x3+x+2,
    把E(﹣4,y)代入得:y=﹣6,
    ∴点E的坐标为(﹣4,﹣6).
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
    解得:,
    ∴直线BD的表达式为y=x﹣2.
    把x=0代入y=x﹣2得:y=﹣2,
    ∴D(0,﹣2).
    当点G与点D重合时,G的坐标为(0,﹣2).
    ∵GF∥x轴,
    ∴F的纵坐标为﹣2.
    将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
    解得:x=+3或x=﹣+3.
    ∵﹣4<x<4,
    ∴点F的坐标为(﹣+3,﹣2).
    ∴m=FG=﹣3.
    ②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
    ∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
    ∵﹣<0,
    ∴m有最大值,
    当x=0时,m的最大值为4.
    (2)当点F在x轴的左侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
    ∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
    解得:x=﹣3或x=4(舍去),
    ∴点F的坐标为(﹣3,0).
    当点F在x轴的右侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
    ∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
    解得:x=﹣3或x=﹣﹣3(舍去),
    ∴点F的坐标为(﹣3,).
    综上所述,点F的坐标为(﹣3,0)或(﹣3,).
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    21、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
    【解析】
    (1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
    (1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
    (3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
    又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
    得n=3或n=﹣2(舍去).求得P点坐标.
    【详解】
    解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .

    解得,x1=2.
    ∴B(2,5).
    又∵
    ∴b=.
    ∴抛物线解析式为y= ,
    (1)如图1,

    ∵B(2,5),C(5,1).
    ∴直线BC的解析式为y=﹣x+1.
    由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    ∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
    由S△CBF=EF•OB,
    ∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
    又∵S△CDB=BD•OC=×(2﹣)×1=
    ∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
    化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
    当m=1时,S四边形CDBF最大,为.
    此时,E点坐标为(1,1).
    (3)存在.
    如图1,

    由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
    过N作NO⊥x轴于点P(n,5).
    ∴NP=﹣n1+n+1,PG=n﹣1.
    又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
    AB1=51=15.
    ∴AC1+BC1=AB1.
    ∴△ABC为直角三角形.
    当△ABC∽△GNP,且时,
    即,
    整理得,n1﹣1n﹣6=5.
    解得,n=1+ 或n=1﹣(舍去).
    此时P点坐标为(1+,5).
    当△ABC∽△GNP,且时,
    即,
    整理得,n1+n﹣11=5.
    解得,n=3或n=﹣2(舍去).
    此时P点坐标为(3,5).
    综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
    【点睛】
    本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
    22、(1)y=;y=x+1;(2)∠ACO=45°;(3)0 【解析】
    (1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;
    (2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;
    (3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.
    【详解】
    (1)∵△AOB的面积为1,并且点A在第一象限,
    ∴k=2,∴y=;
    ∵点A的横坐标为1,
    ∴A(1,2).
    把A(1,2)代入y=ax+1得,a=1.
    ∴y=x+1.
    (2)令y=0,0=x+1,
    ∴x=−1,
    ∴C(−1,0).
    ∴OC=1,BC=OB+OC=2.
    ∴AB=CB,
    ∴∠ACO=45°.
    (3)由图象可知,在第一象限,当y>y>0时,0 在第三象限,当y>y>0时,−1 【点睛】
    此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.
    23、(1)0<x≤200,且 x是整数(2)175
    【解析】
    (1)根据商场的规定确定出x的范围即可;
    (2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
    【详解】
    (1)根据题意得:0<x≤200,且x为整数;
    (2)设小王原计划购买x个纪念品,
    根据题意得:,
    整理得:5x+175=6x,
    解得:x=175,
    经检验x=175是分式方程的解,且满足题意,
    则小王原计划购买175个纪念品.
    【点睛】
    此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
    24、(1)125°;(2)125°;(3)∠BOC=90°+n°.
    【解析】
    如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+∠A,然后根据此结论分别解决(1)、(2)、(3).
    【详解】
    如图,

    ∵BO、CO是角平分线,
    ∴∠ABC=2∠1,∠ACB=2∠2,
    ∵∠ABC+∠ACB+∠A=180°,
    ∴2∠1+2∠2+∠A=180°,
    ∵∠1+∠2+∠BOC=180°,
    ∴2∠1+2∠2+2∠BOC=360°,
    ∴2∠BOC﹣∠A=180°,
    ∴∠BOC=90°+∠A,
    (1)∵∠ABC=50°,∠ACB=60°,
    ∴∠A=180°﹣50°﹣60°=70°,
    ∴∠BOC=90°+×70°=125°;
    (2)∠BOC=90°+∠A=125°;
    (3)∠BOC=90°+n°.
    【点睛】
    本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.

    相关试卷

    江苏省苏州市园区重点名校2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份江苏省苏州市园区重点名校2022年中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    广东省揭阳市普宁市重点达标名校2022年中考数学最后冲刺模拟试卷含解析: 这是一份广东省揭阳市普宁市重点达标名校2022年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,的倒数是等内容,欢迎下载使用。

    广东省肇庆市封开县重点名校2022年中考冲刺卷数学试题含解析: 这是一份广东省肇庆市封开县重点名校2022年中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,的一个有理化因式是,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map